Rensch’s and Bergmann’s Rules in Cis-Andean South-American Howler Monkeys (Mammalia: Alouatta)

Jamilde de Moura Bubadue1, George Lucas Sá Polidoro1, Getuza Melo2, Jonas Sponchiado1, Carmela Serio3, Marina Melchonna3, Alessandro Mondanaro3, Silvia Castiglione3, Carlo Meloro3, Pasquale Raia3, Nilton Carlos Caceres3, Francesco Carotenuto3,4

1Programa de Pós-Graduação em Biodiversidade Animal, Department of Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS, 97110-970, Brazil
2Department of Ecology and Evolution, CCNE, Federal University of Santa Maria, Santa Maria, RS, 97110-970, Brazil
3Department of Earth Science, Environment and Resources, University of Naples Federico II, 80138 Napoli, Italy
4Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK

Abstract

Howler monkeys (genus Alouatta) are large folivorous primates living in South America. We tested for the application of both Rensch’s rule and Bergmann’s rule to body size variation in Alouatta. We found that Rensch’s rule does apply in howlers. In Alouatta, males exploit dominance rank competition, and take advantage from seasonal abundance of high nutritious fruit supply in their diet. This mating system and dietary characteristics suggest positive male selection for body size is responsible for Rensch’s rule. However, since folivory favors large body size in primates (to lower mass specific metabolic rate) and it is the primary dietary habits in howlers, larger species do occur in the Amazon basin, originating a reversed Bergmann’s rule pattern for both males and females at the interspecific level. The spatial and phylogenetic components of such body size patterns of variation are both important, implying Alouatta ecomorphological differences to occur above the species level, justifying their non-overlapping geographic distribution.

Introduction

In 1848, Carl Bergmann observed that, among endothermic species, individuals living at high latitudes tend to be larger than those standing closer to the equator (Bergmann, 1847). This was once explained with the higher body surface-to-volume ratio in smaller animals, which helps dissipating heat in warm habitats (Meiri et al., 2014). The heat conservation hypothesis is not a sufficient explanation for it, and further justifications regard fasting endurance (Lindstedt and Boyce, 1985), environmental predictability (Calder, 1974), and productivity (James, 1970).

Whatever the reason for Bergmann’s rule is, its application is not as universal as the term “rule” would suggest (Meiri, 2011). In small-sized animals, like rodents, there are several cases of reverse Bergmanian pattern (Maestri et al., 2016; Medina et al., 2007; Belk and Houston, 2002; Gohli and Voje, 2016). In the Neotropics, Martinez et al., (2013) recorded a Bergmann’s rule like pattern South to the equator for crab-eating fox Cercdocyon, while the reverse applies North to it. Examples suggest that, perhaps unsurprisingly, the relationship between body size and the geography is far more complicated than a simplistic rule would suggest.

While Bergmann’s rule describes a latitudinal size cline, Rensch’s rule predicts that sexual dimorphism (SSD) increases with body size for species whose males are larger, and the opposite if females are (Rensch, 1950; Fairbairn, 1997, 2007, 2013; Fairbairn et al., 2007). Male body size is in fact expected to be the primary locus of selection for Rensch’s rule, due to male-male competition for mates (Blanckenhorn et al., 2006; Gordon, 2004).

Since Bergmann’s rule predicts larger body size with latitude, and Rensch’s rule predicts larger SSD with males larger than females, the effect of the two patterns may conflate, provided the largest species occur farther from the equator (Eweleit and Reinhold, 2014; Werner et al., 2016). Thus, under Rensch’s rule, the latitudinal trend in male body size may steepen (Blanckenhorn et al., 2006).

In primates, both Bergmann’s and Rensch’s rules were explored a number of times (Gordon, 2004; Clauss et al., 2013). Harcourt and Schreier (2009) found support for Bergmann’s rule, and Smith and Cheverud (2002) found Primates as a whole to obey Rensch’s rule. Yet, when the model is controlled for the phylogeny, the relationship disappears for both Platyrhini and Strepsirhini.

Howler monkeys (genus Alouatta) are an ideal study model to test Bergmann’s rule. Rensch’s rules, and their potential interaction. Howlers are highly sexually dimorphic (Ford, 1994), and widely distributed in South America. Alouatta belongs to the Atelidae family. The genus comprises 11 species, which diversified during the Miocene, when their common ancestor expanded its geographical range through the Andean Cordillera (Meloro et al., 2014a; Lynch-Alfaro, 2012). Biogeographically, there are two distinct, monophyletic groups of howlers. Trans-Andean Alouatta include species distributed over Central America and Trans-Andean Colombia and Ecuador. Cis-Andean Alouatta include the South American species (Cortés-Ortiz et al., 2003). Although widely distributed, most Alouatta species are restricted to a single biome and show little geographic overlap with each other (i.e. they tend to be parapatric). Howler monkeys are highly-specialized leafs feeders. As with so many folivorous taxa, these monkeys tend to have a low activity pattern as compared to other South-American primates such as capuchins (Cortés-Ortiz et al., 2003; Lynch-Alfaro, 2012).

We tested whether Rensch’s and Bergmann’s rules apply to Alouatta species and their interaction. We focused upon the Cis-Andean clade we have studied in the field. This is welcome because only Cis-Andean Alouatta occurs outside the Tropics, and occupy, as a group, a much wider latitudinal range than the Trans-Andean clade, making them bet-
ter suited to study latitudinal effects on body size variation. We used latitude as the predictor variable in both cases, but since latitude is just a proxy for environmental variables (see Martinez et al., 2013; Maestri et al., 2016), such as temperature, precipitation and vegetation type, we further tested for the impact of these variables. Specifically, we stated three explicit hypotheses:

1. *Alouatta* species follow Rensch’s rule. In these primates, males tend to be larger than females and compete with each other (Meloro et al., 2014b). Thus, we expect a stronger relationship between sexual dimorphism and the size of males rather than the size of females (i.e. male-driven increased SSD with size).

2. *Alouatta* species follow Bergmann’s rule at the interspecific level (Pincheira-Donoso, 2010; Meiri, 2011).

3. Sexual size dimorphism (SSD) varies with the latitude. This hypothesis follows form hypotheses 1 and 2. If Rensch’s and Bergmann’s rule both apply in *Alouatta*, then sexual dimorphism will also correlate with latitude (as well as with the environmental variables latitude is a proxy for).

Materials and Methods

We collected data for 227 skulls of *Alouatta* (Tab. 1), belonging to the following six different species, *A. belzebul*, *A. caraya*, *A. guariba*, *A. macconnelli*, *A. nigerima* and *A. seniculus* (with the exclusion of *A. sara* because of the lack of specimens in the museums we visited) housed in the main Brazilian museums: Museu Nacional (MNRJ), Museu Paraense Emílio Goeldi (MPEG), Museu de Zootologia da Universidade de São Paulo (MZUSP), Museu de História Natural Capão da Imbuia (MHNCI), Coleção Científica de Mastozoologia da UFPR (DZUP), Museu de ciências naturais da Fundação Zoobotânica do Rio Grande do Sul (MCNFZB). We included only specimens for which collection locality geographical coordinates were available. Unfortunately, body size data were not reported in most cases. We therefore relied on geometric morphometrics techniques to retrieve size information from the collected specimens. In geometric morphometrics, landmarks (placed on specimens’ anatomically homologous points) are placed all along the structure of interest (in this case the skull).

The specimen centroid size (a measure of the size of the landmarks configuration) is a very good proxy for body size (Zelditch et al., 2012). The data-acquisition protocol includes taking skull photographs taken at a fixed distance (1 m) to the digital camera applying zoom to correct possible deformations due to lenses (Meloro et al., 2008). Then, digital photographs were landmarked by a single investigator (N.C.), in order to prevent inter-observer error, using the software *tpsDig2* 2.16 (Rohlf, 2015). When taking photos, we positioned a scale bar adjacent to the specimen in order to transform digital pixels into linear measurements, allowing us to compute skull size directly from the configuration of landmarks. Two-dimensional homologous landmarks were identified and digitized in order to extract skull size information, in the form of the natural logarithm of centroid size (LnCS, see configuration of landmarks used at Meloro et al., 2014b). The protocol concludes with analytical and geometric transformation that reduce acquisition error and scales all the measured specimens to the unity (Rohlf and Slice, 2015). When taking photos, we positioned a scale bar adjacent to the digital camera applying zoom to correct possible deformations due to lenses (Meloro et al., 2008). Then, digital photographs were landmarked by a single investigator (N.C.), in order to prevent inter-observer error, using the software *tpsDig2* 2.16 (Rohlf, 2015). When taking photos, we positioned a scale bar adjacent to the specimen in order to transform digital pixels into linear measurements, allowing us to compute skull size directly from the configuration of landmarks. Two-dimensional homologous landmarks were identified and digitized in order to extract skull size information, in the form of the natural logarithm of centroid size (LnCS, see configuration of landmarks used at Meloro et al., 2014b). The protocol concludes with analytical and geometric transformation that reduce acquisition error and scales all the measured specimens to the unity (Rohlf and Slice, 1990).

In order to study the geographical patterns of species body size and SSD, we collated geographically the specimens by performing a classic spatial sampling protocol. We overlaid the geographic dataset (sampling points) with a grid and then computed mean female body size, mean male body size, and SSD per species per each cell of the grid. This way, each body size mean and SSD datapoints acquire the geographical coordinates of the cell centroid they belong, separately for each species. We used a grid with a 250×250 km cell resolution in order to maximize the number of useful cells as to have at least one individual of both sexes for each species in a cell. In the end, the original dataset reduced from 227 specimens to 82 samples distributed in 38 total useful cells following the criteria explained above (Fig. 1; see also Fig. S1 and Tab. S2).

Environmental variables

For each specimen, we recorded the geographic coordinates of its collection locality and a set of four related environmental variables: Annual Mean Temperature (BIO1), Temperature Seasonality (BIO4), Annual Precipitation (BIO12) and Precipitation Seasonality (BIO15) (Hijmans et al., 2005). These variables are provided as geographical raster grids at 50×50 km cell resolution (WorldClim raster database, worldclim.org). Temperature and precipitation, together with their variability, determine the dominant climate of a region. Two additional

Table 1 – Skull sample size for the six *Alouatta* species considered in this study. The data reported are referred to the whole sample of specimens and the reduced dataset after the spatial sampling by cell grid.

<table>
<thead>
<tr>
<th>Species</th>
<th>#Specimens</th>
<th>#Females</th>
<th>#Males</th>
<th>#Specimens in cells</th>
<th>#Females in cells</th>
<th>#Males in cells</th>
<th>Average males per cell</th>
<th>Average females per cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alouatta belzebul</td>
<td>65</td>
<td>36</td>
<td>29</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alouatta caraya</td>
<td>44</td>
<td>19</td>
<td>25</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Alouatta guariba</td>
<td>47</td>
<td>19</td>
<td>28</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alouatta macconnelli</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alouatta nigerima</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alouatta seniculus</td>
<td>50</td>
<td>29</td>
<td>21</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>227</td>
<td>113</td>
<td>114</td>
<td>84</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
variables were taken from the Atlas of the Biosphere [net primary productivity (NPP) and evapotranspiration, https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php], by using DIVA-GIS 7.5 software (http://www.divagis.org/download). These variables are informative as per the energy (biomass) available to species, which may impact on sexual dimorphism in primates (Plavcan, 2012).

Statistical analyses

First, we used the cell-averaged LnCS to test for differences in sex and species (and their interaction) by using a two-way ANOVA. To test the existence of Rensch’s rule, we computed the Sexual Size Dimorphism (SSD) for each species in each cell as the difference between male and female LnCS and used it as response variable versus female and male LnCS as covariates in a linear regression. Then, to test for Bergmann’s rule, we used the cell-averaged female and male mean LnCS for each species against latitude of the cells centroids. Similarly, to test for a potential role of climate on these species skull size variability, we ran regression models including environmental variables as predictors and the sex-averaged LnCS for each species in each cell as response. The interaction between Rensch’s and Bergmann’s rule was tested by using SDD per cell as the response variable, and the latitude of the cell centroid, plus environmental variables in separate regression models (one for each predictor).

Controlling for the spatial autocorrelation and phylogenetic relatedness

When dealing with geographically distributed variables, their spatial correlation must be accounted for (Diniz-Filho et al., 2003). To this aim, we computed Moran’s Index on both cell averaged SSD and male and female LnCS by using the software Sam v.4.0 (Rangel et al., 2010). We anticipate here we found significant spatial autocorrelation in the model’s residuals (Table S4), hence we took it into account in our analyses by including a new set of variables describing the spatial structure of the predictors. This is done by performing the Eigenvector-based Spatial Filtering (Griffith, 2013), which is a method that uses a distance or connectivity matrix to perform a Principal Coordinate Analysis (PCOA). Then, the method selects the eigenvectors iteratively as to minimize spatial autocorrelation in the residuals (Griffith and Peres-Neto, 2006). The algorithm starts by using the eigenvectors as explanatory variables in an Ordinary Least Square (OLS) regression with the trait (here cell averaged male, female LnCS, or SSD, alternatively) as the response variable. The residual autocorrelation is computed and the eigenvector in the model with smallest Moran’s I coefficient is selected and becomes fixed. The algorithm proceeds iteratively by adding new eigenvectors in the (multiple) regression until the residuals autocorrelation is below a given threshold for p-values, usually 0.05 (Diniz-Filho et al., 2012; Carotenuto et al., 2015). Once the algorithm finds the most relevant eigenvectors, we can include them as additional covariates (herein named “spatial filters”) in the regression models. The algorithm described above was performed by using the software SAM (Rangel et al., 2010).

Due to species shared ancestry, we also needed to take into account possible phylogenetic effects. We used as a reference the Alouatta tree provided by Cortés-Ortiz et al. (2003). The tree was trimmed to our dataset (i.e. by including Cis-Andean clade species only) using the Mesquite 2.75 software (Maddison and Maddison, 2011) (Fig. S3). We excluded A. nigerrima from the phylogenetic analyses because of its unstable phylogenetic positioning. Branch lengths were based on the estimated minimum ages, as reported in Cortés-Ortiz et al. (2003). The ages of undated nodes were estimated using the BLADi algorithm (branch length adjustment; Webb et al., 2008) in the Phylocom software. Since specimens were used as our sample base for the phylogeny, polytomies within each species were employed when more than one specimen per species was in the tree, conventionally setting tips within species at 0.1 Ma. The inclusion of multiple specimens per species is particularly important here, since potential within-species variation related to sex, geographical distribution and climate are the focus of the present paper. The multispecies phylogenetic regressions were performed applying phylogenetic generalized least squares regressions (Ives et al., 2007), between environmental variables and the cell averaged values of SSD, of male LnCS, and of female LnCS, respectively, while accounting for interspecific variability, using the function pglS in “phytools” (Revell, 2012).

We performed all the regressions in four ways: by using Ordinary Least Squares (OLS); OLS with the spatial filters as additional covariates to account for spatial autocorrelation; performing PGLSs to account for phylogenetic relatedness; and drawing a more complex set of models by performing PGLS regressions including spatial filters as additional covariates to account for both phylogenetic relatedness and spatial autocorrelation at the same time.

Results

By grouping specimens using the 250×250 km cell resolution grid we identified 38 cells. Where a species was present with individuals of one sex only it was excluded. By this criterion, the number of cells available to testing reduced to 34.

In the two-way ANOVA model using species and sex as factors, we found size to be significantly different for both factors (Species: F=15.626, df=5, p<0.001; Sex: F=392.251, df=1, p<0.001), with no interaction between them (F=8081; df=5, p=0.553). Males are larger than females in all species, with A. macconnelli and A. seniculus being the largest overall (Fig. 2).

Hypothesis 1. Rensch’s Rule

We found strong evidence in favour of Rensch’s rule (Tab. 2, Fig. 3). Male skull size is significantly related to SSD, the same applies under PGLS, and when spatial filtering is applied. No significant result was found for females (Tab. 2, Fig. 3).

Hypothesis 2. Bergmann’s rule

Against hypothesis 2, we found the reverse of Bergmann’s rule to apply to both females and males in Alouatta when using the Ordinary Least Squares regression model (Tab. 3, Fig. 4). The slope is positive, which means a decrease of males and females’ LnCS southward. For males, the same applies when accounting for spatial and phylogenetic effects (Tab. 3). For females, Bergmann’s rule disappeared under PGLS, and under PGLS plus spatial filter (Tab. 3). As regards the relationship between males LnCS and the environmental variables we found that when considering the BIO1 as covariate, all the four models were positive but significant only with the OLS and the OLS plus spatial filter (Tab. S5). When we considered the BIO4 as predictor, the model was
Table 2 – Results of regressions between body size and the degree of sexual dimorphism in *Alouatta*, performed separately for males and females, respectively. male LnCS = natural logarithm of males' centroid size, female LnCS = natural logarithm of females' centroid size, SSD = sexual size dimorphism. The specification "PGLS" indicates phylogenetic generalized least squares regression results. The specification "s.filter" indicates spatial filtering was imposed on the regressor to account for spatial autocorrelation.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Regression Estimates</th>
<th>LogLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>s.e.</td>
<td>t</td>
</tr>
<tr>
<td>male LnCS vs SSD</td>
<td>0.843 0.181 4.659</td>
<td><0.0001</td>
</tr>
<tr>
<td>male LnCS vs SSD + s.filter</td>
<td>0.830 0.177 4.689</td>
<td><0.0001</td>
</tr>
<tr>
<td>male LnCS vs SSD in PGLS</td>
<td>0.588 0.112 5.242</td>
<td><0.0001</td>
</tr>
<tr>
<td>female LnCS vs SSD</td>
<td>0.601 0.114 5.286</td>
<td><0.0001</td>
</tr>
<tr>
<td>female LnCS vs SSD + s.filter</td>
<td>-0.156 0.185 -0.845</td>
<td>0.403</td>
</tr>
<tr>
<td>female LnCS vs SSD in PGLS</td>
<td>-0.169 0.181 -0.937</td>
<td>0.355</td>
</tr>
<tr>
<td>male LnCS vs female LnCS</td>
<td>-0.323 0.171 -1.893</td>
<td>0.066</td>
</tr>
<tr>
<td>male LnCS vs female LnCS + s.filter</td>
<td>-0.331 0.176 -1.882</td>
<td>0.068</td>
</tr>
<tr>
<td>male LnCS vs female LnCS in PGLS</td>
<td>0.807 0.151 5.355</td>
<td><0.0001</td>
</tr>
<tr>
<td>male LnCS vs female LnCS + s.filter</td>
<td>0.784 0.157 4.983</td>
<td><0.0001</td>
</tr>
<tr>
<td>male LnCS vs female LnCS in PGLS</td>
<td>0.382 0.121 3.164</td>
<td>0.003</td>
</tr>
<tr>
<td>male LnCS vs female LnCS + s.filter in PGLS</td>
<td>0.368 0.122 3.010</td>
<td>0.065</td>
</tr>
</tbody>
</table>

always positive and significant for all the models. All the models were negative and significant when considering BIO13 as predictor, whereas no model was significant when considering BIO15. The relationships between male LnCS and evapotranspiration were all positive and significant, whereas no significant result was found when considering net primary productivity (Tab. S5).

For females, the relationship between LnCS and BIO1 was significant and positive only when considering the spatial information. The relationships between females LnCS and BIO4 were negative and significant only for the OLS and the OLS + spatial filter models, and the same applied when considering BIO4 except for the sign of the slope. The relationship between BIO12 and females LnCS was positive and significant only for the OLS and OLS + spatial filter, whereas no significant relationships were found for BIO15. Evapotranspiration was positive and significant for the first two models (Tab. 3), whereas no model was significant when considering net primary productivity as predictor (see Tab. S5).

Table 3 – Results of regressions between body size latitude in *Alouatta*, performed separately for males and females, respectively. male LnCS = natural logarithm of males' centroid size, female LnCS = natural logarithm of females' centroid size, Latitude = latitude of the grid cell in decimal degrees. The specification "PGLS" indicates phylogenetic generalized least squares regression results. The specification "s.filter" indicates spatial filtering was imposed on the regressor to account for spatial autocorrelation.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Regression Estimates</th>
<th>LogLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>s.e.</td>
<td>t</td>
</tr>
<tr>
<td>Latitude vs male LnCS</td>
<td>84.723 21.199 3.997</td>
<td><0.0001</td>
</tr>
<tr>
<td>Latitude vs male LnCS + s.filter</td>
<td>85.950 22.112 3.887</td>
<td><0.0001</td>
</tr>
<tr>
<td>Latitude vs male LnCS in PGLS</td>
<td>0.002 0.001 2.298</td>
<td>0.027</td>
</tr>
<tr>
<td>Latitude vs male LnCS + s.filter in PGLS</td>
<td>0.002 0.001 2.104</td>
<td>0.042</td>
</tr>
<tr>
<td>Latitude vs female LnCS</td>
<td>88.925 27.315 3.256</td>
<td>0.002</td>
</tr>
<tr>
<td>Latitude vs female LnCS + s.filter</td>
<td>90.029 28.637 3.144</td>
<td>0.003</td>
</tr>
<tr>
<td>Latitude vs female LnCS in PGLS</td>
<td>0.001 0.001 1.423</td>
<td>0.163</td>
</tr>
<tr>
<td>Latitude vs female LnCS + s.filter in PGLS</td>
<td>0.001 0.001 1.119</td>
<td>0.271</td>
</tr>
</tbody>
</table>

Table 4 – The degree of sexual dimorphism (SSD) regressed against latitude in *Alouatta*. Regressions were performed separately for males and females, respectively. lat = latitude in decimal degrees. The specification "PGLS" indicates phylogenetic generalized least squares regression results. The specification "s.filter" indicates spatial filtering was imposed on the regressor to account for spatial autocorrelation.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Regression Estimates</th>
<th>LogLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>s.e.</td>
<td>t</td>
</tr>
<tr>
<td>Latitude vs SSD</td>
<td>47.288 34.289 1.379</td>
<td>0.176</td>
</tr>
<tr>
<td>Latitude vs SSD + s.filter</td>
<td>46.432 34.649 1.340</td>
<td>0.189</td>
</tr>
<tr>
<td>Latitude vs SSD in PGLS</td>
<td>0.001 0.001 1.125</td>
<td>0.268</td>
</tr>
<tr>
<td>Latitude vs SSD + s.filter in PGLS</td>
<td>0.001 0.001 1.202</td>
<td>0.237</td>
</tr>
</tbody>
</table>

Discussion

The body size of individuals within species can be shaped by environmental (Bergmann’s rule), ethological, or ecological factors, like character displacement, or the mating system (Bubadué et al., 2016; Carotenuto et al., 2015; De Lisle and Rowe, 2015; Meiri et al., 2014;
Ashton K.G., Tracy M.C., de Queiroz A., 2000. Is Bergmann's rule valid for mammals?
References
howler monkeys
diet (Bicca-Marques and Calegaro-Marques, 1994; Peres, 1997), it is
Alouatta
increases sexual dimorphism in polygynous species (Isaac and Johnson,
findings to the prolonged growth of males in this genus. It has been
morphism we found (in keeping with Rensch's rule) must be driven by
male/maleinteractions, at least to some extent. Ravosa and Ross (1994)
size overlap between species is minimized to avoid competition, Dayan
Ford, 1994). In general terms, folivory and arboreality correlate to little
sexual dimorphism (Kelaita et al., 2011; Plavcan and Van Schaik, 1997;
and Simberloff, 2005). However, dietary differences between sexes are
negligible in Alouatta species (Pavelka and Knopfl, 2004; Glander and
Teaford, 1995; Bicca-Marques and Calegaro-Marques, 1994) meaning
there is little competition for food between males and females. There-
fore, the positive relationship between male size and sexual size
morphology we found (in keeping with Rensch’s rule) must be driven by
male/male interactions, at least to some extent. Ravosa and Ross (1994)
found evidence for Rensch’s rule in Alouatta, and similarly related their
findings to the prolonged growth of males in this genus. It has been
suggested that an even distribution of resources through the year de-
creases sexual dimorphism in polygynous species (Isaac and Johnson,
2003). As Alouatta experience a seasonal abundance of fruit in their
diet (Bicca-Marques and Calegaro-Marques, 1994; Peres, 1997), it is
possible that males are better in securing this occasional resource sur-
plus than females, which would burst their growth (Weckerly, 1998).
and help intrasexual competition over mates. We found that Brown
howler monkeys A. guariba follows Bergmann’s rule. It is interesting
noticing that the percentage of leaves in the diet of the brown howler
decreases with latitude in Belize (Chaves and Bicca-Marques, 2013).
Assuming this to be true for other species as well, it suggests that
folivory decreases body size differences with latitude within species,
but increases between species. This would help explaining why we found
evidence for a reverse Bergmann’s pattern for both males and females
(Table 4), and why larger species do occur in the Amazon basin (Fig. 1).
In summary, our results indicate that body size variation in Alou-
atta follows Rensch’s rule. A possible explanation of such a pattern
can be addressed to the Howler monkeys’ dominance rank competition
mate system (Kay et al., 1988) that, coupled with the seasonal abun-
dance of fruits supply in the Amazon basin, favours selection for large
sized males in equatorial species. We found a reverse Bergmann’s rule
pattern between species, although Bergmann’s rule may be still valid
within some individual species. This possibly depends on the relative
consumption of leaves versus fruit in the diet, which is higher in the
Amazon basin. Whereas larger howlers are folivorous, the occasional
inclusion of fruit in the diet may increase body size within species,
especially in males.

Limitation of the study
We urge the reader to consider that the results we found are valid for
some one half of the living Howler species. While this does not weaken
the validity and the soundness of our findings, it would be interesting
to explore, in the future, whether the same patterns accrue to Trans-
Andean howlers. 68

References
Ashton K.G., Tracy M.C., de Queiroz A., 2000. Is Bergmann’s rule valid for mammals?
effects: sex-bias in egg-laying order facilitates divergence in sexual dimorphism between
Fishes. The American Naturalist 160(6).
Bergmann C. 1848. Uber die Verhaltnisse der Warmeökonomie der Thiere zu ihrer Grösse.
Göttingen. [in German]
Biological Journal of the Linnean Society 1–15.
Rensch meets Howmans Bergmann’s sexual size dimorphism change simultaneously with
Data: Behavioral Traits: Bergmann’s Howmans sexual size dimorphism change simultaneously with
Clauss M., Dittmann M.T., Müller D.W.H., Meloro C., Codron D., 2013. Bergmann’s rule
Cortés-Ortiz L., Berningham E., Risco, C., Rodrigo-Luna E., Sampaio I., Ruiz-Garcia
M., 2003. Molecular systematics and biogeography of the Neotropical monkey,
Dayan T., Simberloff D., 2005. Ecological and community-wide character displacement:
De Lisle S.P., Rowe L., 2015. Ecological character displacement between the sexes. The
rule apply in the polytypic bushcricket Poecilimon veluchianus?. Ecological Entomo-
Fairbairn D.J., 1997. Alomometry for sexual size dimorphism: pattern and process in
the evolution of body size in males and females. Annual review of ecology and systematics
D., Blankenhen W., Szekely T. (Eds) Sex, Size and gender Roles. Evolutionary Studies
Fairbairn D.J., 2013. Odd Couples. Extraordinary Differences Between the Sexes in the
Studies of Sexual Size Dimorphism. Oxford University Press.
Journal of Primatology 34(2): 221–244.
(Version 0.0–7). Available at http://r-forge.r-project.org/R/?group_id=185
rule apply in the polytypic bushcricket Poecilimon veluchianus?. Ecological Entomo-
families. BMC evolutionary biology 16(1): 222.
Gordon A.D., 2004. Evolution of body size and sexual size dimorphism in the order Prim-
ates: Gohi’s rule, quantitative genetics, and phylogenetic effects. PhD dissertation,
University of Texas, Austin.
Griffith D.A., 2013. Spatial autocorrelation and spatial filtering: gaining understanding
through theory and scientific visualization. Springer Science & Business Media.
Griffith D.A., Peres-Neto PR., 2006. Spatial modeling in ecology: the flexibility of eigen-
Spatial autocorrelation analysis allows disentangling the balance between neutral and
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution
an interpolated climatesurfaces forgloballandareas. InternationalJournalofClimatology.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution
an interpolated climatesurfaces forgloballandareas. InternationalJournalofClimatology.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution
an interpolated climatesurfaces forgloballandareas. InternationalJournalofClimatology.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution
an interpolated climatesurfaces forgloballandareas. InternationalJournalofClimatology.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution
an interpolated climatesurfaces forgloballandareas. InternationalJournalofClimatology.