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Abstract

Having clear ecological knowledge of protected species is essential for being able to successfully
take actions towards conservation, but this knowledge is also crucial for managing and prevent-
ing conservation conflicts. For example, the Siberian flying squirrel, Pteromys volans, listed in the
EU Habitats Directive and inhabiting mature forests that are also the target for logging, has had a
major role in political discussions regarding conservation in Finland. This species has also been
well-researched during recent decades, providing knowledge on the ecology andmanagement of the
animal. Herein, we review knowledge on habitats, demography, community interactions and spa-
tial ecology of this flagship species. We compare the ecology of flying squirrels with that of other
arboreal squirrels, and summarize conservation management and policy related to flying squirrels.
Reviewed research on the Siberian flying squirrel shows that the species has many similarities in be-
haviour to other arboreal squirrels. For instance, arboreal squirrels deviate from the general pattern
of male-biased sexual size dimorphism in mammals, which perhaps relates to the mating system
of arboreal squirrels. Important differences are found in the response of Siberian flying squirrels
to tree mast, i.e. pulsed food resource, compared to that of red squirrels, and in communal nest-
ing behaviour compared to that of North American flying squirrels. The extensive knowledge on
dispersal behaviour of the flying squirrel, well-studied habitat associations and the proved need for
evidence-based conservation may guide researchers and managers working with other similar spe-
cies. For conservation, the case of the Siberian flying squirrel demonstrates that habitat protection
becomes both ineffective and uneconomical if ecological knowledge is not applied in the conserva-
tion planning process. The cost-effective conservation of the species requires both landscape-level
conservation planning and flexible conservation options to increase the motivation of land owners
for conservation.

Introduction
Protection of vulnerable species often creates conflicts between land
use and conservation management. For example, in Europe the
European Union (EU) Habitats Directive (92/43/EEC) lists species for
which resting and nesting places are strictly protected, but implement-
ation of the Directive has created conflicts in several countries (Haila
et al., 2007). One problem for effective conservation is the difficulty to
define what a protected habitat, its size and characteristics, should be
for a particular species. To manage conflicts and promote actions to-
wards successful conservation, accurate knowledge on the habitat use
and ecology of any protected species is central. Ecological knowledge
may provide justifications for practical actions and thus may help in
resolving conflicts between land use and conservation.
One group of mammalian species with conservation interests across

the world is arboreal squirrels, including tree squirrels and flying squir-
rels (Koprowski, 2005; Smith et al., 2005; Selonen et al., 2010a). These
species may be showing a trend of declining in abundance because
they are specialized to mature forest habitats, and these forests are of-
ten the target for logging. In addition, flying squirrels are typically
on the “slow” end of the life-history spectrum of rodents, and feature
traits such as low mortality, low metabolic rate, and few offspring per
litter (Holmes and Austad, 1994; Fokidis et al., 2007). Declining pop-
ulations have been observed for flying squirrels (Hanski, 2006; Smith,
2007; Selonen et al., 2010a), and sudden local extinctions for gliders,
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the Australian analogue of flying squirrels (Lindenmayer et al., 2011),
which suggests caution should be taken when planning actions that po-
tentially affect the populations of gliding species.

The only flying squirrel occurring within the EU is the Siberian fly-
ing squirrel, Pteromys volans, hereafter the SFS. The species lives in
northern boreal forests, and is limited to Finland and Estonia within
the EU. The SFS is listed in the EU Habitats Directive, and due to con-
servation interests related to the species, it has received much research
interest during recent decades in Finland. Consequently, much know-
ledge related to the ecology of this species and its practical conserva-
tion management have been gained, which may also guide researchers
and managers interested in other arboreal squirrels (subfamily Sciur-
inae) that potentially have similar behaviours as SFSs. Here, we re-
view current ecological knowledge of this flagship species and discuss
the conservation policy of the SFS in Finland. We have two main aims
with this paper. First (i), we strive to enhance ecological knowledge
of arboreal squirrels in general by reviewing knowledge on habitat use,
demography, community interactions and spatial ecology of the SFS
and comparing some of these results with the ecology of other well-
studied tree and flying squirrels (red squirrels: Sciurus vulgaris, from
now on the EU red squirrel, and Tamiasciurus hudsonicus, from now on
the NA red squirrel; and North American flying squirrels: the southern
flying squirrel, Glaucomys volans, and the northern flying squirrel, G.
sabrinus, from now on NA flying squirrels). Our second aim (ii) is to
provide conclusions that might help when planning the management of
other arboreal squirrels or species protected by the EU Habitats Direct-
ive; therefore, we summarize the conservation management and policy
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related to the SFS in Finland. For conservation, the case of the SFS
demonstrates that habitat protection becomes both ineffective and un-
economical if ecological knowledge is not applied in the conservation
planning process and a landscape-scale perspective is neglected.

General
The SFS is a nocturnal, arboreal rodent that nests in tree cavities,
nest-boxes and dreys (twig nests) in boreal forests. It belongs to the
Siberian fauna type, and its range spans Eurasia, from Finland and the
Baltic countries, through Siberia, to Korea and Hokkaido Island, Japan
(Wilson and Reeder, 2005). In Finland, the SFS is distributed roughly
across half of the country, from south to north-eastern central Finland
(Hanski, 2006). It is relatively rare in the Baltic counties, where the
distribution is restricted to north-eastern and southern parts of Estonia
and north-eastern Latvia (Timm and Kiristaja, 2002). In the latter re-
gion, no verified observations of the SFS have been made during the
last few decades (Pilats, 2010). In Japan, the SFS occurs in forests from
lowlands to montane regions (Abe et al., 2005).
Fossil records of the tribe Pteromyini show that flying squirrels ex-

isted in forests in southern and south-eastern Asia during the Quatern-
ary period, where diversification also took place (Xuefei et al., 2013).
Thus, the SFS survived through glacial periods in these scattered
refuges, and developed rapidly after the cooling period. Phylogeo-
graphical studies based on mitochondrial DNA have found three differ-
ent lineages: Hokkaido, Far East and north-eastern Eurasia (Oshida et
al., 2005; Lee et al., 2008). According to Thorington et al. (2012), four
sub-species differing in colouration have been identified; P. v. volans
(from Finland to Russia) and P. v. orii (Hokkaido, Japan) look sim-
ilar, whereas P. v. athene (Sakhalin island) is more brownish and P. v.
buechneri (China and Korean peninsula) has a darker colour than the
two aforementioned sub-species.
Other gliding squirrel species closely related to the SFS, or that have

been well-studied, are the Japanese flying squirrel (P. momonga), a spe-
cies larger than the SFS and endemic to three islands in Japan (Thor-
ington et al., 2012); the northern flying squirrel (G. sabrinus) in North
America—the only other boreal species in the Pteromyinae; and the
southern flying squirrel (G. volans), which is distributed over the east-
ern part of North America, from Nova Scotia (Canada) southwards to
Honduras (South America) (Thorington et al., 2012).

Habitat and food
In the European part of the distribution range, the SFS is clearly con-
fined to mature spruce-dominated forests with a mixture of deciduous
trees, such as birch (Betula spp.), alder (Alnus spp.) and aspen (Popu-
lus tremula) (Hanski, 1998; Reunanen et al., 2002a; Airapetyants and
Fokin, 2003; Santangeli et al., 2013a). The species can also occupy
urbanized areas (Mäkeläinen et al., 2015).
In Finland, species occurrence increases with the average forest age,

the volume of spruce trees (Picea abies) and the occurrence of de-
ciduous trees within the spruce forest (Hanski, 1998; Reunanen et al.,
2002a; Santangeli et al., 2013a). On the landscape scale, the presence
of agricultural fields has also been associated to the occurrence of the
SFS (Santangeli et al., 2013a), as fields occur in regions with fertile
soil (Remm et al., 2017). In addition, in Finnish forest-dominated land-
scapes, the coverage of fields does not extend above the level where it
would affect SFS occupancy patterns (Remm et al., 2017). These stud-
ies are based on the extensive systematic survey of the SFS within an
area that covers most of the distribution range of the species in Fin-
land (177 600 km2; Hanski, 2006; Santangeli et al., 2013a; Haakana et
al., 2017; Remm et al., 2017). Based on a mark-recapture study of two
populations within a high-density area, the reproductive success of the
SFS is not very sensitive to the cover of mature forests near nesting
sites (Hoset et al., 2017). The preference for old growth forests may
be more pronounced at the northern limits of the species’ distribution
range (Hurme et al., 2008a).
The preference for fertile soil and mixed forest structure in European

boreal forests is explained by the food habits of the species: In Finland,

alder and birch are important food sources, but aspen, pine and spruce
are also used as forage. During winter and early spring, birch and
alder catkins are the main foods (Mäkelä, 1996; Hanski et al., 2000b;
Selonen et al., 2016a). Birch catkins form the main part of the winter
diet (80% of food consumed, based on diet analysis of faecal samples;
Mäkelä, 1996), whereas alder catkins are preferred over birch (Sulkava
and Sulkava, 1993; Mäkelä, 1996; Selonen and Wistbacka, 2016). In
addition, the SFS stores alder catkins in cavities, nest-boxes and on
tree branches (Sulkava and Sulkava, 1993; Mäkelä, 1996; Hanski et
al., 2000b; Selonen and Wistbacka, 2016). Catkins develop in sum-
mer, and the SFS starts to consume them in autumn. Catkins remain
on the trees, and individuals continue eating the catkins during the fol-
lowing winter and early spring when the catkins flower. After leaf-burst
in the beginning of May, leaves form the main diet for the SFS in late
spring and summer (Mäkelä, 1996). However, during pregnancy and
parturition, females are still dependent on catkin production/storages
and buds, because themating season starts inmid-March and first litters
are born in late April. Catkin production varies considerably between
years (Selonen et al., 2016a), and mast of birch and alder before breed-
ing is one determinant of reproduction in SFSs (Selonen and Wist-
backa, 2016; Selonen et al., 2016a; Hoset et al., 2017). In contrast
to some red squirrel studies (Boutin et al., 2006; Wauters et al., 2008),
food abundance in upcoming autumn does not affect reproduction of
SFSs (Selonen and Wistbacka, 2016). In Japan, similarly to Finland,
the main food items during summer months are the leaves of different
deciduous trees (e.g. Salix spp., Populus sp., Ulmus sp.), but buds and
seeds (of both broadleaf trees and conifers) are also eaten. In early au-
tumn, the SFS also forages on pine seeds (Pinus koraiensis) in Japan
(Asari and Yanagawa, 2008).

In addition to food, the presence of nesting sites influences SFS hab-
itat selection (Selonen and Hanski, 2004). In fact, the ability to locate
a nest cavity heavily determines the dispersal patterns of the species
(Selonen and Hanski, 2004, 2012) and affects adult spacing behaviour
(Hanski et al., 2000a; Mäkeläinen et al., 2016). Since deciduous trees,
such as aspen and alder, often occur at the edges of fields and forests,
the occurrence of cavity trees and food sources may explain the obser-
vations that SFSs prefer edge sites (Desrochers et al., 2003).

Current studies on habitat associations are predominantly restricted
to Finland. However, some knowledge on habitat associations is being
gathered in other regions. Inhabited forests in the European part of
Russia and Estonia are conifer-dominated mature forests with aspen,
alder, birch and willow (Timm and Kiristaja, 2002; Airapetyants and
Fokin, 2003), and are thus similar to those observed in Finnish studies
(Hanski, 1998; Reunanen et al., 2002a; Santangeli et al., 2013a). In
Japan, the SFS is found in mixed coniferous forests, but dominant tree
species differ from in Europe; for example, subspecies P. v. orii in
Hokkaido, Japan, inhabits forests dominated with Sakhalin fir (Abies
sakhalinensis) (e.g. Suzuki et al., 2011) or coniferous trees belonging
to genusPinus sp. orPicea sp., and broadleaf trees belonging to various
genera, such as Betula, Quercus, Tilia, or Acer (Yamamoto et al., 1995;
Asari and Yanagawa, 2016).

Comparison with other squirrels

The food ecology of the SFS seems to be significantly similar to that
of other arboreal squirrels (Tab. 1), because many arboreal squirrel
species are dependent on tree mast at least to some degree. A ma-
jor difference is that the reproduction of the SFS only depends on food
conditions in the winter/spring before reproduction (Selonen andWist-
backa, 2016; Selonen et al., 2016a), whereas both EU andNA red squir-
rels may also reproduce in anticipation of the future food abundance of
the following autumn (Boutin et al., 2006; Wauters et al., 2008). This
has potential consequences on population fluctuations of these species.
The food ecology of the northern flying squirrel also differs from that
of the SFS, since the former is clearly dependent on truffle production
of forests (Curah et al., 2000). This results in variations in behaviour
(Smith, 2007) and also perhaps differences in habitat selection between
the SFS and the northern flying squirrel.
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Figure 1 – A typical flying squirrel nest box in Finland. Nest boxes are designed to resemble
natural cavities. ©Toni Laaksonen.

Nest use
SFSs nest in cavities, dreys (twig nest) and nest boxes. In addition,
nests occasionally are located in buildings in urban areas. SFSs typic-
ally have several nests (from 2 to 12), and there are possibly seasonal
differences in the use of the various nest types (Hanski et al., 2000a;
Hanski, Mäkeläinen, Selonen unpublished data). In Finland, cavit-
ies are the most common nest source, made by the great-spotted wood
pecker (Dendrocopus major). These cavities are usually located in as-
pens and have an entrance-hole size (of ≈45 mm) that prevents most
natural enemies, such as the Ural owl (Strix uralensis), from entering.
This may be a reason why SFSs seldom abandon the cavity when dis-
turbed (pers. obs.). The main tree species providing cavities varies
regionally. In Korea (P. volans) and Japan (for Japanese flying squirrel
P. momonga), most nests are located in coniferous trees (Suzuki et al.,
2011; Lee et al., 2012). Male SFSs in general have more nest sites than
females, and a greater proportion of their nests include dreys (Hanski
et al., 2000a). Dreys are usually located in coniferous trees, in Finland
mostly in spruces (Hanski et al., 2000a). Dreys resemble twig nests
made by red squirrels, and in fact, the dreys used by SFSs may have
been originally constructed by EU red squirrels. Mortality in cavities
vs. dreys has not been studied, but dreys may serve as unsafe nests com-
pared to cavities of SFSs. For example, pine martens (Martes martes)
may kill individuals in dreys (Nyholm, 1970), but they cannot invade
a cavity made by a great-spotted woodpecker. Indeed, it is uncertain
whether SFS females give birth in dreys because all observations of
new-born juveniles have come from cavities or nest boxes.
Nest boxes are widely used by the SFS (Fig. 1) and by NA flying

squirrels (Fokidis and Risch, 2005). This has enhanced the research of
these species on topics that require capturing and handling of individu-
als. In SFS studies, communal nesting patterns (Selonen et al., 2014) or
reproductive success (similar litter sizes observed within the same year;
V. Selonen, unpublished data) do not differ between nest boxes and nat-
ural cavities. In these studies, individuals have used boxes that have
been made to resemble natural cavities (Fig. 1). Location of nests in
different habitats, distance to edge or habitat connectivity between the
nest sites do not seem to restrict habitat use of the species (Desrochers
et al., 2003; Mäkeläinen et al., 2016). However, availability of nests
affects space-use patterns, and individuals may have to search for suit-
able nests in a fragmented landscape, as SFSs with larger home-ranges
also have more distinct nest sites (Mäkeläinen et al., 2016). Fine-scale
factors, for example the height and diameter of a cavity and the condi-
tion of tree (live or snag), have affected nest use in Japan (Suzuki and
Yanagawa, 2013). In general, SFSs were found to use cavities that were
over one metre high, with entrances from three to five cm, which were
in live trees (Suzuki and Yanagawa, 2013). The same study also found

that more nest boxes were used in forests with fewer cavities. However,
since the reproductive success of the SFSmay be similar in cavities and
artificial nests (see above), nest boxes might provide an additional tool
to improve habitat quality.

Comparison with other squirrels
Squirrel species that den in cavities usually prefer mature forests, like
the SFS and the NA flying squirrel do (Menzel et al., 2004; Holloway
and Malcolm, 2007; Pyare et al., 2010). Compared to flying squirrel
species, both NA and EU red squirrels are more confined to use twig
nests (Tab. 1), but prefer mature trees because of feeding habits (Waut-
ers and Dhondt, 1990; Koprowski, 2005). In Finland, SFSs mainly
nest in live trees (pers. obs., but see Nakama and Yanagawa, 2009).
However, for the northern flying squirrel, no preference has been ob-
served regarding the use of live trees versus snags (Pyare et al., 2010),
although it may also prefer cavities in certain regions (Smith, 2007).
The main difference in nesting behaviour between the SFS and other
arboreal squirrels seems to relate to communal nesting behaviour in
winter (see section “Winter ecology” below).

Mating system
In Finland, the mating season of SFSs starts in mid-March (gestation
period 41 days and lactation period 42–45 days). After the first litter,
born in April, the female SFS can have a second litter in June. Females
are territorial, living in separate home-ranges, but males live in over-
lapping home-ranges that encompass the home-ranges of several males
and females (Fig. 2; Selonen et al., 2013). As with other arboreal squir-
rels (Tab. 1), the mating system of the SFS is polygynous-promiscuous
with multiple paternity within one litter. Perhaps due to low population
density, the level of multiple paternity within litters remains relatively
low in SFSs (Selonen et al., 2013).

The SFSmating systemmay have elements of both scramble compet-
ition (Selonen et al., 2016b), in which the mating success for males de-
pends on search effort to locate females (Koprowski, 2007; Lane et al.,
2009), and female-defence system (Selonen et al., 2013, 2016b), where
mating opportunities for males depend on an individual’s position in
the male dominance hierarchy (Koprowski, 2007). Indeed, large body
size has been observed to increase reproductive success both in female
and male SFSs (Selonen et al., 2013; but see Hoset et al., 2017). In ad-

Figure 2 – An example of the locations of five male and six female home ranges, and
dispersal paths of two juveniles in partially fragmented landscape near city of Kuopio,
Finland (62°53′33′′ N, 27°40′42′′ E). MCP: Minimum Convex Polygon home ranges.
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dition, female SFSs are larger than males in the same species (Selonen
et al., 2016b). This pattern may result from benefits of females being
large, for example, to aid gliding when pregnant (Fokidis and Risch,
2008). Alternatively, males may benefit from being small and quick in
scramble competition mating system. If low body mass facilitates fast
gliding in SFS males, being small may benefit them in being able to
locate several females during the short time period when females are
in oestrus (Selonen et al., 2016b).

Comparison with other squirrels

There are major similarities between the mating system of SFSs and
that of other tree and flying squirrels. At least during the breeding time,
female arboreal squirrels are, to some extent, territorial, and the core
areas of home-ranges are spatially separated (Tab. 1). Consequently,
males need to actively move between territories of different females to
increase their reproductive success. This may lead to a scramble com-
petition mating system (Lane et al., 2009). However, both in EU and
NA red squirrels and SFSs, larger males have higher reproductive suc-
cess than smaller males, in line with the female-defence mating system
(Wauters et al., 1990; Koprowski, 2007; Selonen et al., 2013). Indeed,
the mating systems of many arboreal squirrels may have elements of
both scramble competition and defence mating systems. It is also not-
able that arboreal squirrels usually deviate from the general mammalian
pattern of males being larger than females (Tab. 1).

Winter ecology
Belonging to boreal fauna type, the SFS seems to be well-adapted to
cold climates; species survival is not lower in winter than during other
seasons (Mäkeläinen, 2016). The activity period is, however, shorter,
and distances moved decrease during the middle of winter, compared to
other seasons (Hanski et al., 2000a). The same nest sites are used both
in winter and summer (own observation). Catkins are important food
in winter and SFSs cache catkins of alder (see above), but catkins can
also be consumed directly from trees, where they remain throughout
the winter. Nevertheless, caches may decrease the need to move long
distances from the nest during the cold season. In lowmast years, SFSs
consume, e.g., coniferous buds, and it is unknown whether the lack of
catkins affects winter survival.
In many rodent species, individuals may enhance thermoregulation

and winter survival by communal nesting. However, Selonen et al.
(2014) did not find that cold weather during winter increases communal
nesting in SFSs, as individuals were observed to often nest alone, even
on the coldest of nights. This observation further supports the notion
that SFSs are well-adapted to cold climates. Interestingly, an increased
amount of precipitation in winter is linked to a slight increase in re-
productive success for the following spring and summer (Selonen et
al., 2016a; Selonen and Wistbacka, 2016). It remains unclear what
is behind this observed correlation, but the amount of precipitation in
winter may be related to moisture conditions in spring, which is linked
to growth of deciduous trees (food source of SFS).

Comparison with other squirrels

Similar to NA and EU red squirrels, the SFS depends on tree mast and
cache food during winter. However, northern flying squirrels have a
clearly different diet (Tab. 1) and another difference in winter ecology
between the SFS and NA flying squirrels is related to communal nest-
ing behaviour. For the SFS, communal nesting seems to be mainly re-
lated to mating behaviour (Selonen et al., 2014; Asari and Yanagawa,
2016), whereas in NA flying squirrels, communal nesting is explained
by thermoregulation benefits of cold weather (Stapp et al., 1991; Layne
and Raymond, 1994). The group structure observed in the communal
nests of different arboreal squirrel species also shows other differ-
ences (Tab. 1); whether communal nests are same-sex or mixed-sex,
or between kin or non-kin, may be related to variations in mating beha-
viour and dispersal patterns of offspring in different arboreal squirrel
species.

Community interactions
Predators
In the European part of the distribution range, the main predators of
SFSs are large owls, namely the Ural owl (Strix uralensis) and the
eagle owl (Bubo bubo), but also the tawny owl (Strix aluco), goshawk
(Accipiter gentilis) and pine marten (Hanski et al., 2000b; Selonen
et al., 2010a). In urban areas, domestic cats are common predator
(Mäkeläinen, 2016). The Ural owl is the main predator also in Japan
(Yushin Asari, pers. comm.). SFSs appear less frequently than EU red
squirrels in the diet of their main predators (Selonen et al., 2010a). The
presence of a predator can obviously affect SFS occupancy patterns;
SFSs are unlikely to exist near nests of the Ural owl, but apparently due
to competition within the predator guild, they are positively associated
with the goshawk, if both Ural owls and goshawks are present in the
area (Byholm et al., 2012).

Parasites
Studies on the parasites of the SFS are limited, but seasonal variation
was found in the abundance of two flea species; a specialist flea species
on SFSs has been found to dominate during summer and autumn sea-
sons, whereas a flea common for EU red squirrels was found to exist in
more abundance during winter (Haukisalmi and Hanski, 2007). A new
species of protozoa of genus Trypanosoma was also found in SFSs in
China (Sato et al., 2007).

Competition with other species
We are unaware of studies on competition between the SFS and other
species, but such interspecific competition is known to occur between
the NA flying squirrels (Weigl, 1978; Smith, 2007). There is likely
competition for cavities between the SFS and other cavity users, but
it remains unknown whether some species might prevent SFSs from
using nesting cavities. The pygmy owl (Glaucidium passerinum) is one
potential cavity competitor, but is not a very common species in boreal
forests. It also seems unlikely that SFSs would compete with EU red
squirrels that have different nest and food requirements and are day
active in contrast to nocturnal SFSs.

Working as a conservation surrogate
Due to the habitat association of the SFS, the species is suggested to
be a potential umbrella species that can aid in the protection of other
species with smaller area requirements but a similar dependence on
mature forests (for example some beetles or polypores; Hurme et al.,
2008b; Vierikko et al., 2010). However, this topic requires further study
to verify the SFS’s status of umbrella species in the various parts of its
distribution range.

Comparison with other squirrels
In contrast to EU and NA red squirrels and NA flying squirrels (Carey
et al., 1992; Studd et al., 2015), SFSs appear to only have a minor role
in the food web of boreal forest communities (Hanski et al., 2000b;
Selonen et al., 2010a), and they are not the main prey of any predator.
EU and NA red squirrels are important in the diets of some predat-
ors, such as the goshawk (Accipiter gentilis), and also have a potential
role in the reproductive ecology of spruce (Steele, 2008; Selonen et al.,
2010a; Studd et al., 2015). Northern flying squirrels have a major role
in the diet of northern spotted owls (Strix occidentalis) (Carey et al.,
1992), and both species of NA flying squirrels are potential vectors for
truffle dispersion (Lehmkuhl et al., 2004). For SFSs, we are unaware
of any possible role in the dispersion of used food items. The likely
reason for a negligible role by SFSs in food webs is their relatively low
densities in forest landscapes.

Demography and densities
Mark-recapture studies of ear-tagged individuals and radio-telemetry
studies have indicated yearly survival values of between 0.43 and 0.76
for adults (Lampila et al., 2009a; Brommer et al., 2017; Mäkeläinen,
2016). As for most other species, survival is generally lower among
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juveniles, even though it is not affected by their dispersal distance
(Mäkeläinen, 2016). In mark-recapture studies, survival estimates and
population size are associated with habitat loss due to forest logging
(Lampila et al., 2009a; Koskimäki et al., 2014). In addition, from a
landscape perspective, an increase in unsuitable habitat (within a buf-
fer of 500 m) seems to increase male mortality. There is also clear
regional variation in survival probabilities (Mäkeläinen, 2016).
Survival of SFSs in relation to tree-species composition is not

known, but a recent study from a high-density area indicates that
amount of mature forest has a surprisingly low effect on lifetime repro-
ductive success of females (Hoset et al., 2017). Instead, reproductive
success is determined by mast abundance during the lifetime of a fe-
male (Hoset et al., 2017). Although mast affects reproductive success
(Selonen andWistbacka, 2016), there are no clear indications that pop-
ulation fluctuations follow food abundance (V. Selonen unpublished).
For example, female survival shows onlyminor variation between years
(Brommer et al., 2017). Reproduction is not only dependent on food
conditions, but also onweather (Selonen andWistbacka, 2016; Selonen
et al., 2016a). Litter size usually varies from between two and four off-
spring for both the first and the second litter, but only a proportion (e.g.
15–30%) of females manage to produce two litters a year (Hanski et
al., 2000b; Selonen and Wistbacka, 2016).
The density of SFSs clearly varies regionally (Kurhinen et al., 2011;

Santangeli et al., 2013a; Remm et al., 2017), a phenomenon that can be
linked to soil fertility and amount of preferred forest habitat in the land-
scape (Remm et al., 2017), and to spatial population dynamics (Hurme
et al., 2008a; Brommer et al., 2017). In Hokkaido, much higher densit-
ies have been reported for P. volans orii (2 individuals/ha, Suzuki et al.,
2011) than for SFSs in Finland (less than 0.1 individuals/ha in Finland;
Hanski et al., 2000a).
SFSs are not of any major commercial use for humans, although they

are hunted in some regions of East-Asia for the fur trade. This is not
considered a major threat for SFSs (Nowak, 1991).

Comparison with other squirrels
Lampila et al. (2009a) stated that compared to other squirrel spe-
cies, survival estimates for the SFS seem relatively low. In contrast,
Mäkeläinen (2016) concluded that survival estimates are quite similar
to other arboreal squirrel species. The highest densities of the north-
ern flying squirrel have been found in old-growth forests, but its density
is also strongly influenced by the availability of food and nest cavities
(Smith, 2007, but see Wheatley et al., 2005). For the southern fly-
ing squirrel, density is not observed to be strongly affected by forest
management, but its abundance has been associated with the density of
mast trees (Holloway and Malcolm, 2007). In general, SFS densities
appear clearly lower than NA flying squirrel densities in North America
(Smith, 2007) and EU red squirrel densities (Lurz et al., 2005).

Movements
In Finland, SFSs occupy large home-ranges in relation to the average
home-range sizes of rodents of the same weight; males move on av-
erage within a 60 hectare area (100% minimum convex polygon) and
females within an 8 hectare area (Hanski et al., 2000a). Fragmentation
of the forest landscape increases space utilization by males (Selonen et
al., 2001). In a partially urban landscape, home-range sizes were sim-
ilar to those in managed forests (Mäkeläinen et al., 2016). SFSs prefer
using mature forests during their nightly movements, but are able to
move through different and less suitable forested habitats (Selonen and
Hanski, 2004). Both sexes show seasonal variation in distance moved
and movement speed (Hanski et al., 2000a; Mäkeläinen et al., 2016).
The dispersal behaviour of SFSs has been intensively studied in

Finland. Based on these studies, natal dispersal, i.e. the movement
between the site of birth and site of first breeding, is the main process
behind colonization, habitat selection and gene flow in SFSs (Hanski
and Selonen, 2009; Selonen et al., 2010b; Selonen and Wistbacka,
2017). The natal dispersal period is during the first autumn after birth,
and in general almost all females disperse, whereas only a minority
of male offspring remain philopatric. Thus, natal dispersal is female-

biased in SFSs, a pattern that is atypical for a mammal, and may be re-
lated to competition for nesting sites between females in SFSs (Hanski
and Selonen, 2009). In some cases, males may disperse in the spring
before or during the first mating season or later (Hanski and Selonen,
2009; Selonen andWistbacka, 2017). On average, movements of adults
(potential breeding dispersal) do not increase the distance moved from
the natal nest, and thus do not influence gene flow or population disper-
sion (Selonen and Wistbacka, 2017). In other words, on average, the
spread of individual SFSs and their genes across the landscape does not
continue after natal dispersal.

The average detected natal dispersal distances are 1.7 km and 2.5 km
for males and females, respectively (maximum observed 9 km for both
sexes, Hanski and Selonen, 2009; Selonen et al., 2010b). The final
dispersal distance is determined by individual attributes (Selonen and
Hanski, 2010a,b; Selonen et al., 2012), landscape structure at the natal
site (Selonen et al., 2007), and that within dispersed landscape and at
the settlement site (Selonen and Hanski, 2004). Interestingly, long-
distance dispersal does not seem to have obvious survival effects, and
probably is not selected against in the SFS (Selonen and Hanski, 2012;
Selonen et al., 2012). In addition, parents do not force juveniles to
abandon the natal site (Selonen and Hanski, 2010c). The dispersal data
of the SFS also indicate that dispersal is a unique phase in the life of an
individual that cannot be predicted from movement behaviour in non-
dispersing life phases, such as adult movements within breeding home-
ranges (van Dyck and Baguette, 2005; Selonen and Hanski, 2006). Us-
ing movement data only from non-dispersers may result in misleading
conclusions on the species’ response to fragmentation (Selonen and
Hanski, 2004, 2006; van Dyck and Baguette, 2005). For example, dis-
persing SFSs more frequently use young forest stands and open areas
for moving between forest fragments than adults use them (Selonen and
Hanski, 2006).

Unlike the red squirrel or northern flying squirrel, the SFS hardly
ever moves on the ground. Therefore, open areas (fields, clear cuts,
lakes) wider than 100 metres may act as dispersal barriers, but can
occasionally be crossed if single trees are found within the open area
(Selonen and Hanski, 2004). Similar observations have also been made
for NAflying squirrels (Wheatley, 2011; see also Taylor andGoldingay,
2012). In Finland, the lack of structural connectivity does not seem to
have effect on the dispersal ability of SFSs (Selonen and Hanski, 2004,
2012), but the population seems to persist in a network of uncoupled
subpopulations, where movement between sub-populations is of crit-
ical importance (Brommer et al., 2017). Thus, dispersal has a key role
in population persistence (Brommer et al., 2017).

Comparison with other squirrels
Sex-specific patterns in home-range size are comparable between SFSs
and other squirrel species (Tab. 2). NA flying squirrels respond to frag-
mentation similarly to SFSs, by increasing home-range sizes, but in
general the home-ranges of SFSs are large (Hanski et al., 2000a), par-
ticularly for males (Tab. 2). In EU red squirrels, availability of food
influences the home-range area and use (Wauters and Dhondt, 1992;
Lurz et al., 2000), but similar observations are lacking for the SFS.

Information on the dispersal of arboreal squirrels other than SFSs
has mainly been restricted to red squirrels (Larsen and Boutin, 1994;
Berteaux and Boutin, 2000; Wauters et al., 2010; Fey et al., 2016). The
major dissimilarity here to NA red squirrels is that natal dispersal dis-
tances of this species may be very short, partly due to the bequeathal
of territories by mother NA red squirrels to their offspring (Boutin
et al., 2000, but see Merrick and Koprowski, 2017). Conversely in
SFSs, natal philopatry is linked to territory vacancy after the appar-
ent death of a mother (Selonen and Wistbacka, 2017). Dispersal dis-
tances may partly be comparable between the SFS and northern flying
squirrel (Smith et al., 2011b), and EU red squirrels (Wauters et al.,
2010; Selonen and Hanski, 2015). Thus, behavioural dispersal stud-
ies of SFSs may give insight on dispersal behaviour in these squirrel
species. Interestingly, in arboreal squirrels, dispersal is not, or is only
weakly, male-biased (Tab. 2). One possible factor behind this pattern
may be the mating system of arboreal squirrels, in which females are
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to some extent territorial. Finally, in contrast to SFSs, red squirrels are
reported to perform breeding dispersal, either related to recourse avail-
ability (EU red squirrels, Lurz et al., 1997) or as a form of parental
investment (NA red squirrels, Boutin et al., 2000). However, the dis-
tances moved in these cases (at least in NA red squirrels) are usually
comparable to movements within the home-range by the SFS (Tab. 2).
Thus, the role of breeding dispersal in gene flow and population spread
of red squirrels remains uncertain.

Habitat fragmentation
In forest-dominated Finnish landscapes the SFS is not very sensitive to
habitat fragmentation (Selonen and Hanski, 2015; Remm et al., 2017),
mainly because an individual’s ability tomove and disperse in fragmen-
ted landscapes is relatively good (Selonen and Hanski, 2004, 2012). In
other words, the landscape is mainly functionally continuous, i.e. in-
dividuals can reach most habitat fragments in the landscape. Based
on patterns in genetic differentiation between populations, Lampila et
al. (2009b) claimed that the species suffers from habitat fragmentation.
This conclusion was not supported by other studies observing compar-
able levels of genetic differentiation in areas where dispersal was not
restricted by fragmentation (Selonen et al., 2005, 2010b). Koskimäki et
al. (2014) argued that the observed population decline was larger than
could be explained by habitat loss only in the study area in central Fin-
land. However, in this study, fragmentation effects were not directly
studied. Hoset et al. (2017) concluded that the area of mature forest
near nest sites have little effect on the life-time reproductive success of
female SFSs.
Although the above studies indicate no clear effect of fragmentation

on SFSs, it is certain that wide open areas restrict the movements of
arboreal squirrels (Selonen and Hanski, 2004). Heavy fragmentation
by agriculture has been shown to affect EU red squirrel populations
(Selonen and Hanski, 2015), and responses to fragmentation are likely
density-dependent and region-specific (Remm et al., 2017). For ex-
ample, the species may be more sensitive to fragmentation the near
northern edge of its distribution range, where forests are more barren
and densities lower than in the core distribution area (Mönkkönen et
al., 1997; Reunanen et al., 2002b; Hurme et al., 2008a).
We are not able to predict when the effects of fragmentation start

to aggravate the effects of habitat loss for SFS populations (Selonen
and Hanski, 2015). There appears to be, however, an optimum value
in the amount of preferred forest in the landscape in occupancy pat-
terns; Reunanen et al. (2004) concluded that for the northern Finnish
study areas, spruce-dominated forest habitat should make up 12–16%
of the landscape (on a scale of 1 km2) to maintain SFSs. Based on oc-
cupancy data for almost the whole distribution area in Finland, Remm
et al. (2017) concluded that the optimum level of preferred forests in
the landscape is 10–15% (4 km landscape buffer). However, the abund-
ance of SFSs was surprisingly observed to decline when the proportion
of preferred habitat increased above the optimal level. In addition, the
response varied in regions with high and low densities of SFSs (Remm
et al., 2017).

Comparison with other squirrels
Densities of many tree squirrel species tend to increase with decreasing
forest patch size, indicating a compaction response to fragmentation
and thus increased densities in smaller forest fragments (Koprowski,
2005). In addition, many studies have observed that squirrels prefer
large forest patches over smaller ones (Pyare et al., 2010; Selonen and
Hanski, 2015), although SFSs may prefer edge habitats over large con-
tinuous forests (Remm et al., 2017; Hoset et al., 2017). Conclusions
about the response of arboreal squirrels to fragmentation are difficult to
make (Tab. 2), and there seems to bemixed views on the fragmentation-
sensitivity of arboreal squirrels. Some argue arboreal squirrels are
potentially sensitive to fragmentation (Koprowski, 2005; Smith et al.,
2011b), while others do not (Wheatley et al., 2005; Mortelliti et al.,
2011; Selonen and Hanski, 2015), and the same situation applies to
SFSs (sensitive: Lampila et al., 2009b; Koskimäki et al., 2014; not
sensitive: Selonen and Hanski, 2004; Remm et al., 2017). It can be

assumed that SFSs are more sensitive to fragmentation than EU red
squirrels (Selonen and Hanski, 2015), but recent reviews on both spe-
cies suggest that conservation management focusing on enhancing hab-
itat quality should bemore effective thanmanagement concentrating on
enhancing landscape connectivity (Mortelliti et al., 2011; Selonen and
Hanski, 2015). It is, however, clear that there are limits in patch area
and distance between woodland patches, and when these limits are ex-
ceeded, both occupancy and movement of arboreal squirrels will be af-
fected (Tab. 2). However, these limits are likely density-dependent and
region-specific. In addition, variables describing the amount of forests
on the landscape scale may be more effective than patch attributes in
predicting occurrence of arboreal squirrels (Ritchie et al., 2009; Remm
et al., 2017).

Decline and conservation status
The national population of the SFS in Finland is declining (Hokkanen et
al., 1982; Hanski, 2006; Selonen et al., 2010a; Liukko et al., 2015). The
species used to be classified as “vulnerable” in Finland, but in the most
recent red-list assessment it was categorized as “nearly threatened”,
because the decline was estimated to have been less severe during the
last ten years (23% population decline, which is below the 30% bench-
mark listed by IUCN as an indication for severe decline of population
size, Liukko et al., 2015) than it has been earlier (in the last half of the
20th century). This change in conservation status in Finland does not
affect the protection of the SFS based on the EU Habitats Directive.
Globally, the SFS is considered “least concern” based on IUCN status,
but a declining population trend and possible threat of extinction be-
cause of habitat loss are generally observed throughout its distribution
range (Shar et al., 2016a). For example, it has been classified as an en-
dangered species in South Korea and Estonia, “vulnerable” in China
and considered near extinct in Latvia (Won and Smith, 1999; Timm
and Remm, 2011; Shar et al., 2016b).

Comparison with other squirrels
The case of the SFS supports the view that flying squirrels and gliders
are a group of mammalian species warranting conservation concern
around the world (Smith et al., 2005; Selonen et al., 2010a; Linden-
mayer et al., 2011), even though, globally, all of the species are con-
sidered “least concern” (Tab. 3). For example, one subspecies of the
northern flying squirrel (G. s. coloratus) is currently federally listed
as endangered (U.S. Fish and Wildlife Service, 2013), and regional ab-
sence due to forest logging has been documented in the case of south-
ern flying squirrel (Taulman et al., 1998). In addition to flying squir-
rels, some populations of tree squirrels have also been declining (e.g.
Lurz et al., 2005; Koprowski, 2005; Selonen et al., 2010a), such as the
EU red squirrel in the British Isles, whose population has drastically
decreased due to the Squirrel Pox Virus spread by alien eastern grey
squirrels, Sciurus carolinensis (Sainsbury et al., 2000).

Conservation and management
In general, boreal forests have a long history of forest management.
The majority of the mature forests where SFSs live in Finland occur
on managed privately or corporation-owned forest land. Within these
areas, the protection of the SFS continuously conflicts with land use.
The planning of forestry and other land use must consider the fact that
conservation laws prohibit destroying SFS nesting sites. However, the
overall land restrictions that result from these laws are minimal; ac-
cording to earlier governmental guidelines, only an area with a 10 to 15
meter buffer must be left untouched around nest trees of SFS, resulting
in a protected area of approximately 0.03 to 0.07 hectares (Anonymous,
2004). The predominant forest harvest method in Finland is clear cut-
ting, and additional provisions are made to leave corridors or separate
trees to ensure the connectivity of an area. In any case, the areas left
around nest sites are excessively small, compared to the home-range
size of SFSs (8 ha for females, Hanski et al., 2000a). Thus, it is not sur-
prising that the management guidelines have been ineffective and have
led to unoccupancy of protected sites (Santangeli et al., 2013b; Jokinen
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et al., 2015). The low success of current conservation management in
protecting SFSs implies poor cost-efficiency. For example, millions of
euros were used to cause as little harm as possible to a SFS population
when building a new motorway route between two major cities in Fin-
land in 2002. However, in the end, the protection efforts were largely
ineffective, i.e. they did not prevent the local population from declin-
ing, since sites protected from road construction were still exposed to
normal forest management practices (Hanski, 2011).

Ecological studies have provided knowledge on how to perform cost-
effective conservation management of the SFS on the landscape scale
(Kurttila and Pukkala, 2003; Haila et al., 2007; Hurme et al., 2007;
Selonen andHanski, 2012; Santangeli et al., 2013b; Remmet al., 2017),
but ultimately, these studies have not influenced management practices
(Haila et al., 2007; Jokinen et al., 2015). Studies comparing different
forest harvesting methods have concluded that with alternative meth-
ods, such as continuous-cover silviculture, protected sites can still be
subjected to commercial forest use (Hurme et al., 2007; Jokinen et al.,
2015), without forest owners necessarily losing money from the pro-
cess of protecting the animals (Kurttila and Pukkala, 2003; Hurme et
al., 2007). Haila et al. (2007) suggested conducting dynamic spatial
conservation, which takes into account that not all habitats are of equal
quality for SFSs and not all suitable habitats are occupied at the same
time. For example, the protection of occupied, yet low-quality, sites
may be less important than the protection of unoccupied high-quality
sites. This view is quite different from current management practice,
which ineffectively protects all known sites, creating a situation where
motivation for conservation is low. Currently, around 90% of sites oc-
cupied by the species are estimated to remain without any protection,
because it is not known or it is unreported that the sites are occupied
by SFSs (Jokinen et al., 2015).

Current ecological knowledge has not influenced the conservation of
the SFS for several reasons, including land owners fearing the loss of
money (strict rules for protection result in a situation where only the
minimum actions required are performed), ambiguity between institu-
tions planning SFS conservation, and a lack of co-operation between
people involved in the management process (Haila et al., 2007). It has
also been suggested that the people (ecologists) who contribute know-
ledge to conservation planning should also play a central role in ex-
plaining the consequences and possibilities of alternative management
options to other participants in the management process (Haila et al.,
2007; see also Santangeli and Sutherland, 2016).

One key point for consideration in avoiding conservation conflict is
that land owners must trust that the management process is fair. This
means that some sort of compensation of money loss for land owners
may be needed (Haila et al., 2007). For a species still quite common,
like the SFS in Finland (population size around 300000 individuals;
Hanski, 2006), it is clear that all sites occupied by the species can-
not be protected with the money currently available for conservation.
An important aspect for optimal conservation planning is to take into
account possible differences in motivation for land use, for example,
motives linked to the type of forest ownership. When forests are under
private ownership, conservation programs that are appealing and con-
venient to the owner may be more likely to lead to conservation success
(Santangeli et al., 2016). In principle, increasing forest owner “buy-
in” should decrease the level of expected monetary compensation and
thus increase the cost-efficiency of conservation (Horne et al., 2009).
For example, one voluntary-based conservation option in Finland avail-
able for private forest owners is the Forest Biodiversity Programme for
Southern Finland (METSO) (Government of Finland, 2014). Alternat-
ively, habitat offsetting, i.e. a process where local nature losses can be
compensated by habitat restoration or by protecting equivalently valu-
able habitat elsewhere, can be a valid means of conservation regard-
ing land owned by the government and forest companies. How and
when biodiversity offsetting should be applied in conservation man-
agement has received attention in recent years (e.g. Kiesecker et al.,
2009). Biodiversity offsetting needs careful case-by-case planning, and
can lead to economic interests superseding conservation actions (Cor-
alie et al., 2015). In any case, biodiversity offsetting could benefit the
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cost-effective management of relatively common species that are pro-
tected by the Habitats Directive, such as the SFS, but also for the moor
frog, Rana arvalis, or bats (O. Chiroptera) in Finland, for example, and
help in dealing with tight conflict situations (Nygren, 2015). Moreover,
biodiversity offsetting does not necessarily contradict with the Habit-
ats Directive if planned to improve the current conservation practices
(Anonymous, 2007). However, in the case of the SFS, habitat restor-
ation as a mitigation tool (van Teeffelen et al., 2014) is not practical
because the growth of a mature forest habitat takes long time. Still, the
“no net loss” principle might be achieved by compensating habitat loss
with protection of equivalent suitable forest habitats elsewhere. Biod-
iversity offsetting in the case of the SFS could include a landscape-level
forest management plan and a condition to grow suitable forest for spe-
cies.

According to recent observations, SFSs are capable of persisting in
urban forests (Mäkeläinen et al., 2015, 2016). This might be the case
because near cities, there is less-intensive forest harvesting and fewer
natural predators. Therefore, protection of this species can also be im-
plemented in urban areas, where forest harvesting does not generate a
significant profit. However, zoning processes in urban areas are partic-
ularly sensitive when it comes to conservation conflicts; even the pro-
tection of small areas around nest trees may have large ramifications,
such as the prevention of house or road construction.

Comparison with other squirrels

The conservation of all arboreal squirrels potentially conflicts with the
interests of forestry (Tab. 3), a situation that may create challenges for
squirrel population management. For example, with the protection of
the EU red squirrel in UK, the main strategy is preserving and man-
aging suitable forest habitats. Spatially explicit population modelling
has been used to revise forest management plans of important protec-
tion sites to maintain sites where strong populations of red squirrels
could persist for the long-term (Lurz et al., 1998, 2003). Recommend-
ations for forest management have included preserving large enough
woodland patches, with a tree species composition that provides suffi-
cient food resources (Lurz et al., 1998). Broadleaf trees are favoured
by the invasive grey squirrel, and forest management favouring con-
ifers benefit the EU red squirrel (Pepper and Patterson, 1998). Indeed,
in the UK and Italy, the conservation of the EU red squirrel is strongly
related to the management of the grey squirrel population (Gurnell et
al., 2004; Bertolino et al., 2014). Conservation measures have included
grey squirrel removal and trials to prevent its range expansion, as well
as red squirrel reintroductions (Gurnell and Pepper, 1993; Bertolino
and Genovesi, 2003).

Management guidelines for the NA red squirrel (for the endemic and
isolated red squirrel T. h. grahamensis in Arizona) have included aims
to increase the area of suitable mature forest habitats and prevent dam-
age caused by crown fires or insect outbreaks (Koprowski et al., 2005,
2006). However, the conservation of this subspecies is complicated by
the presence of the exotic Abert’s squirrel (Sciurus aberti), which is
both a possible competitor of resources, and less sensitive to altered
fire regimes (Edelman et al., 2009; Gwinn and Koprowski, 2017). It is
also suggested that middens built by NA red squirrels could serve as
indicators of diversity in forests, and that midden protection with some
forest buffer around them would benefit forest conservation in general
(Posthumus et al., 2015). For the northern flying squirrel, protection
of old growth forest is the recommended conservation tool (Smith,
2007), but the species is very much a forest generalist, occupying both
young and old forests. Thus, providing clear management guidelines
for the species is complicated (Weigl, 2007). As a general guideline for
forest management that supports northern flying squirrels, fine-scale
harvesting and retention of large trees have been suggested (Lehmkuhl
et al., 2006). However, the evidence of effectiveness of these conserva-
tion measures is often limited in arboreal squirrels, and more evidence
should be provided for evaluating how arboreal squirrels respond to
management.

Conclusion
Research on the SFS draws a picture of an arboreal squirrel with be-
haviour and mating systems similar to many other arboreal squirrels.
There are also some clear differences, such as the species’ response to
mast abundance compared to the response of red squirrels (Boutin et
al., 2006; Selonen and Wistbacka, 2016), and differences in communal
nesting behaviour compared to that of NA flying squirrels (Layne and
Raymond, 1994; Selonen et al., 2014). The extensive research that has
been carried out on the dispersal behaviour of SFSs is one factor that
may help to manage and protect other arboreal squirrels. The SFS dis-
persal studies indicate the central role of dispersal in the population
dynamics of the species (Brommer et al., 2017). Thus, dispersal be-
haviour must be understood if one wants to understand population dy-
namics and the response of arboreal squirrel populations to landscape
changes. Indeed, for research on arboreal squirrels other than the SFS,
we suggest increasing knowledge on dispersal behaviour of the species.
Further guidance for knowledge gaps in ecology of arboreal squirrels
can be found in Tab. 1 and 2. In general, many important questions
in squirrel research require more attention in the future, including how
squirrels and their food sources (masting of trees) respond to climate
change (Bisi et al., 2016). It remains unclear how to predict when the
effects of habitat fragmentation start to aggravate the effects of habitat
loss for arboreal squirrel populations (Selonen and Hanski, 2015). In
addition, more focus is needed on relative roles of resources, habitat
(type/loss/fragmentation), predators, and dispersal on population size.
These studies require multispecies data on large spatial and temporal
scales, which, although laborious to collect, will provide a way to better
understand squirrel populations in the changing world.

The case of the SFS demonstrates howmoney can be lost through in-
efficient management if ecological knowledge is not applied in a mean-
ingful manner. Until now, considerable effort by environmental au-
thorities in Finland has been made to protect a small number of the
overall area occupied by the species, with actions that in most cases
have still led to protection failure (Jokinen et al., 2015). It is probably
clear to many politicians and management practitioners in Finland that
the current management strategy for this species is cost-inefficient, and
management conflicts have likely decreased the will to improve current
practices (Nygren, 2015). The SFS can survive in fragmented forest
landscapes (Selonen and Hanski, 2012; Hoset et al., 2017; Remm et
al., 2017), leading one to believe that even slightly more planning on
a landscape scale, using ecological knowledge, would result in more
cost-efficient practices. For protected species that are declining but still
relatively abundant and widely distributed, the case of the SFS suggests
that the best-practise conservation plans should include landscape-level
management of high-quality habitats, combined with carefully planned
habitat offsetting andmethods aiming to increase themotivation of land
owners for conservation.
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