A CLASSIFICATION OF THE GLIRIDAE (RODENTIA) ON THE BASIS OF DENTAL MORPHOLOGY

REMMERT DAAMS (*) & HANS DE BRUIJN (**)

(*) Depto. de Paleontologia, Facultad de Ciencias Geológicas, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain.
(**) Dept. of Stratigraphy/Paleontology, Institute of Earth Sciences, State University of Utrecht, Budapestlaan 4, 3508 TA Utrecht, The Netherlands.

ABSTRACT – The supra-familiar relationships of the Gliridae are discussed. The criterion used for subdividing the Gliridae is the morphology of the cheek teeth because this is the only character known for all taxa. This limitation leads to the undesirable "synonymy" of Glamys and Gliravus, two genera whose type species have a very different skull morphology, and to the incorporation into the Dryomyinae of Graphiurus and Leithiu, despite the fact that Dryomys has a myomorph, Graphiurus a hysticomorph and Leithiu a sciurornorph skull. The hundred and seventy-seven species and thirty eight genera of dormice are grouped into five subfamilies. One of these, the Bransatoglirinae, is new. The subfamily Graphiurinae is suppressed and Graphiumrs is assigned to the Dryomyinae. The genera of the Gliridae and the species allocated to them are listed in the appendix in alphabetical order. The original diagnoses of the genera are given in English and the type locality, type level and synonymy of each species is given.

Key words: Gliridae, Systematics, Taxonomy, Dental morphology, Palaeontology.

Parole chiave: Gliridae, Sistematica, Tassonomia, Morfologia dentale, Palaeontologia.

PREAMBLE

The Rodentia are by far the most diverse order of mammals. In spite of this diversity similar structures have developed repeatedly in different groups. The occurrence of parallel and convergent evolutionary trends seems to be the rule rather than the exception. So it seems that genetic limitations inherent to the order allow a restricted number of efficient morpho-functional adaptations. Reconstructing phylogeny requires the recognition of primitive and derived character states. However, the oldest known representatives, Paramys in N. America and Cocomys in Asia, are already very specialised and very different.
Consequently, the evolutionary relationships among major groups of rodents have not been resolved conclusively in spite of the extensive biological and palaeontological analyses carried out during the last forty years.

The working hypothesis of Hartenberger (1980) who, on fossil evidence, postulated a dichotomy of the unknown Asiatic ancestor of the Rodentia into ischyromyoid and ctenodactyloid groups, is supported by biological data sets (George, 1985) and therefore appealing.

The ischyromyoid branch, characterized by molariform premolars, a small infraorbital foramen and molars that do not increase in size from M1 through M3, reached N. America and Europe during the Early Eocene, but seems to have persisted in S. Asia (de Bruijn et al., 1982). In North America, the Ischyromyoida seem to be the ancestors of Sciuravidae who in turn seem to be at the base of the Geomyoidea. The Muroidea (= Muridae, Cricetidae, Tachyoryctidae, Spalacidae, Rhizomyidae, Gerbillidae and Platacanthomyidae as well as a number of "families" known as fossils only) and the Dipodoidea, who arrived as immigrants in Europe and N. America during the Early Oligocene, cluster in many biological aspects with the Geomyoidea. They are therefore considered to have descended from the Ischyromyoida in Asia. On the basis of tooth morphology and their arrival as immigrants in Europe and N. America, a similar source is suggested for the Sciuroidea and possibly the Aplodontoidea and Castoroidea. In Europe the Ischyromyoida seem to have radiated, shortly after the opening of the North Atlantic, into the Gliroidea (Hartenberger, 1971; Vianey-Liaud, 1985) and the Theridomyoidea. We think that the separate position of the Gliroidea and their descent from protrogomorphous ancestors has been demonstrated beyond reasonable doubt (Vianey-Liaud, 1985). Since the myomorph skull morphology has apparently evolved independently in the Gliridae in Europe and the Muroidea and Dipodoidea in Asia (Vianey-Liaud, 1985) we disagree with Wahlert et al. (1993) who state: "The Myoxidae (= Gliridae) is the sister taxon to the combined Muroidea plus Dipodoidea; these three superfamilies constitute the rodent suborder Myomorpha".

The ctenodactyloid branch of the rodents, originally characterized by a relatively large infraorbital foramen, non-molariform premolars and cheek teeth that increase in size from M1 through M3 etc., shows rapid diversification in Asia during the Eocene. This group seems to be the stock from which not only the Hystricognaths from the Old as well as the New World may be derived, but also the Phiomyoidea. The fossil record suggests that these two entities along with the Anomaluridae may have originated in Africa, while the Ctenodactylidae, Chapattimyidae, Yuomyidae and Pedetidae, who share the same ancestral stock (the Cocornyidae ?), originated in Asia. The genus Diatomys that seems to be the only chapattamyid of the Indian subcontinent to have survived the Early Miocene immigration of rodents from Central Asia, seems to be a good candidate for the ancestry of the Pedetidae. The ctenodactyloids never seem to have reached N. America and the European mainland unless the specimens described as Chapattitnyidae indet. (Pelaez-Campomanes et al., 1989) from the Middle Eocene of Spain are what they seem to be.

This discussion on possible evolutionary relationships among rodents as seen
by a paleontologist has taken us far away from the goal of our paper: the
presentation of a revised classification of the Gliridae. However, we consider it
necessary to explain why we see the Gliroidea as a separate superfamily that is
not part of the Myomorpha, although most of the genera and species included seem
to have a myomorphous skull morphology and all have uniserial incisor enamel.

INTRODUCTION

The Gliridae (dormice) are a monophyletic family that is represented by only
eight genera and some thirteen or fourteen species in the extant fauna. The
geographical range of the family (fossil and extant) is limited to Europe, Asia and
Africa. The oldest record is from Europe (Eogliravus wildi, Mas de Gimel, France;
MP10, Early Eocene) if the genus Eogliravus, with its dental pattern that is
intermediate between the ischyromyoid Microparamys (Sparnacomys) and the true
glirid Gliravus, is allocated to the Gliridae.

The fossil record of the dormice suggests that they are of European origin and
that they have developed from the ischyroinoid branch of the Rodentia during a
radiation that followed the opening of the North Atlantic during the Early Eocene.
The only other rodent family of European origin - the Theridomyidae - represents
another branch of the same radiation.

The diversification of the Gliridae that began in the Early Eocene continued
during the Oligocene and culminated in the Late Early Miocene (MN3-4A) of
Europe, where they seem to have occupied many ecological niches that remained
filled with "cricetids" in the Muroid-dominated assemblages of Asia. The decline
of the Gliridae in terms of diversity as well as of relative abundance in
assemblages of fossil rodents becomes apparent during the Late Middle Miocene
(MN7/8) (Figs. 9 and 10), that is, before the arrival of the first Muridae in Europe.
From the Late Miocene onwards (MN11) the Gliridae are represented in Europe,
Asia and Africa by a few genera only, excluding the insular forms, a situation that
has essentially continued until the present.

Our classification of the Gliridae based on the morphology of the cheek teeth
recognizes five subfamilies, thirty eight genera and one hundred and seventy-seven
species. The number of species will certainly grow rapidly when new information
from Western Asia becomes available, but the general picture is expected to
remain essentially unchanged. This study is intended to show the rise and decline
of the family during its geological history and to facilitate access to the, often
specialized, literature. The Seleviniidae, which belong to the Superfamily
Gliroidea together with the Gliridae, and consisting of the extant Selevinia and the
Pliocene Plioselevinia are not considered in this paper, as we were not able to
study the scarce material. Moreover, hitherto nothing is known about their dental
patterns.

PREVIOUS CLASSIFICATIONS

Opinions on the contents of the family Gliridae have not diverged much during
the last hundred and fifty years. Some have included the Platacanthomyiidae while
others assigned that family to the Muroidea. In contrast to this conformity, the
dormice have appeared under four different names: Gliridae Muirhead, 1819 (or Thomas, 1897), Myoxidae Zimmermann, 1780 (or Waterhouse, 1839), Leithiidae Lydekker, 1895 and Muscardinididae Palmer, 1899. The latter two names are obviously junior synonyms, but the semantics about the correct name for the family may well continue into the next century. Much depends on whether or not *Glis* Brisson, 1762 is considered to be a valid genus name and on the interpretation of the Code of Zoological Nomenclature.

Holden (1993) and Wahlert et al. (1993) use the name Myoxidae because they argue that the name *Glis* does not fulfil the requirements of the Code. We continue to use the name Gliridae because the stability of Zoological Nomenclature is not enhanced by resurrecting a name that has become obsolete since Ellerman's (1940) and Simpson's (1945) classification of the rodents. Pending the opinion of the International Commission of Zoological Nomenclature on the request to preserve Brisson's generic names *Philander*, *Pteropus*, *Glis*, *Cuniculus*, *Hydrochoerus*, *Meles*, *Tragulus* and *Giraffa* (Gentry, 1994) we also consider it premature to replace the name Gliridae by Myoxidae now.

Reuvenis (1890) summarizes the literature and gives diagnoses for five subgenera of the genus *Myoxus* to which all the extant forms are assigned.

Kretzoi (1943) divides the Leithiidae (=Gliridae) into three subfamilies: Graphiurinae, Leithinae and Glirinae on the basis of their dental pattern, assigning the extinct as well as the extant genera to these subfamilies. Unfortunately the logic behind his allocations and his usage of the Leithiidae (while considering *Glis* a valid name) is not understood.

The classification of Simpson (1945) summarizes the literature on fossil and extant dormice and is not based on first hand knowledge. His grouping of the three families Gliridae, Platacanthomyidae and Seleviniidae in the superfamily Gliroidea is not followed. The Platacanthomyidae are allocated to the Muroidea (Qiu Zhuding, 1989) and the Seleviniidae seem to be a synonym of Gliridae (von Koenigswald, 1993). This leaves us with two subfamilies: the Graphiurinae for the African dormice South of the Sahara and the Glirinae for all the other members of the family.

The classification of de Bruijn (1967) based on dental morphology is an attempt to organize the, then rapidly growing, number of fossil genera and species that are defined by their dental pattern only. Although it was meant to be purely typological, the influence of phylogenetic thinking was unfortunately not rigorously avoided. Hence *Peridyromys* and *Pseudodryomys* with a style of dental pattern as in *Myomimus* were grouped with *Glirulus* (instead of with *Myomimus*), because I (H.d.B) considered *Peridyromys* the ancestor of *Glirulus* at the time. Another source of misjudgment is that I was never aware of the great antiquity of some of the dental patterns that characterize extant genera. In other words: the perspective has changed since 1967. A good example of this phenomenon is provided by *Glis* (=*Myoxus*). In 1967 this genus was known from the Pleistocene to the Recent only. However, I postulated a much longer stratigraphical range on the basis of its unique dental pattern (de Bruijn, 1967). We can now trace *Glis* to the Oligocene, and dispute about generic allocation is whether or not to include *Glis* *guerhubezi* Unay, 1989 from the Middle Oligocene of Turkey into *Glis*. For a
A classification of the Gliridae (Rodeutia) on the basis of dental morphology

rodent genus a stratigraphic range for more than thirty million years seems very long and is probably not biologically correct, but the effect of our parsimonious knowledge of fossil species.

The classification proposed by Daams (1981) is also exclusively based on the dental morphology of the cheek teeth and as such an improved version of the arrangement of genera suggested by de Bruijn (1967). Daams' classification maintains a subdivision of the family into five subfamilies. Four of these (the Gliravinae, Glirinae, Dryomyinae and Graphiurinae) are the same as in de Bruijn (1967) although the content of the Dryomyinae is essentially different. Inclusion of Glirulus into the Dryomyinae made Glirulinae de Bruijn a synonym of Dryomyinae. A new subfamily Myomiminae was therefore proposed to house a large number of fossil genera with a style of dental pattern similar to extant Myomimus. Many of these were included in the Dryomyinae by de Bruijn. The island forms Leithia, Hypnomys and Tyrrhenoglis were classified as Gliridae incertae sedis.

Von Koenigswald (1993) divided the Gliridae into three groups on the basis of differences in the microstructure of the enamel of the lower incisors and suggested that the observed character differences could well be of great systematic importance and define major groups. The reason for von Koenigswald not formally defining subfamilies is that too few fossil glirid enamels could be analysed. The introduction of this new set of characters for subdividing the Gliridae is interesting and it is to be hoped that this line of research will be pursued. However, the poor correlation between the type of enamel, the characteristics of the cheek teeth and the cranial anatomy (Wahlert et al., 1993) suggests that the microstructure of the enamel of the lower incisor is yet another morpho-functional character and therefore no more suitable for taxonomy than any of the other data sets. What we need at this stage is information on the evolution of the enamel structure within one lineage.

The most recent classification of the extant Gliridae is by Wahlert et al. (1993). This study provides very complete information on the cranial morphology and dentition of the majority of the extant genera. Unfortunately Selevinia and Chaetocauda were not available to these authors and they did not consider the few skulls of fossil species preserved. This procedure results in a, basically classic classification in which the Gliridae are seen as the sister group of the combined Muroidea and Dipodoidea (for comments, see above). By applying the rule of priority rigorously in combination with refraining from studying the type genera of some of the higher categories used, considerable nomenclatural instability is introduced. The revival of the subfamily Leithiinae Lydekker, 1896 with the tribes Leithiini Lydekker, 1896 and Seleviniini Bashanov and Belosludov, 1939 to replace Dryomyinae de Bruijn, 1967 and Myomiminae Daams, 1981 respectively does not seem a good idea because:

1. The genus Leithia presumably has a sciuromorphous skull (Lydekker, 1895) and an angular process of the lower jaw that is not perforated (de Bruijn, 1966 c). These characters do not match the requirements for Leithiinae (sensu Wahlert et al., 1993).

2. The genus Selevinia is said to have two upper milkmolars or premolars and no
lower d4 or p4 when very young. Although we are inclined to think that this very peculiar dental formula may have been inferred on incorrect observations, this "genus" which has type 3 enamel in the lower incisor but is otherwise virtually unknown, can hardly serve as the type genus of the tribe Seleviini. We therefore maintain Dryomyinae and Myomiminae until it can be shown that these concepts cover the same set of characters as Leithiini and Seleviini.

3. Character polarities of cranial data were assessed using *Paramys copei* Loomis, 1907 from the Lower Eocene of North America as the standard for primitive states. This does not seem a good choice, as this species is already very specialised and as it lacks any relation with the Gliridae, whose origin is situated in Western Europe.

One last remark concerns *Graphiurus* which has a hystricomorphous skull (Wahlert et al., 1993), type 3 enamel in the lower incisors (von Koenigswald, 1993) and a derived dental pattern that is reminiscent of *Eliomys*. Wahlert et al. interpret the skull characters of *Graphiurus* as primitive among living dormice and consequently suggest that it is an old branch of the family. However, fossil evidence shows that the primitive state of the skull of dormice is protrogomorphous. Since the genus is not known from deposits older than the Late Pliocene, and since its dental pattern resembles that of *Eliomys*, we think that *Graphiurus* is a descendant of *Eliomys*.

CLASSIFICATION

Subfamily **GLIRAVINAE** Schaub, 1958

Genus *Eogliravus* Hartenberger, 1971

Type species: *E. hammelii* (Thaler, 1966)

Other species: *E. moltzeri* Pelaez-Campomanes, 1995

E. wildi Hartenberger, 1971

Type species: *G. nzajo* Stehlin & Schaub, 1951

Other species: *G. alvarezae* Lacomba & Morales, 1987

G. bravoi Huguenei, Adrover & Moissenct, 1985

G. bruijnii Huguenei, 1967

G. caracensis Daams, Frcudenthal, Lacomba & Alvarez, 1989

G. daamsi Bosma & de Bruijn, 1982

G. devoogdi Bosma & de Bruijn, 1979

G. fordi Bosma & de Bruijn, 1979

G. iterdiensis Vianey-Liaud, 1989

G. meridionalis Hartenberger, 1971

G. micio (Missonne. 1957)

G. minor Bosma & de Bruijn, 1982

G. priscus Stehlin & Schaub, 1951

G. robiacensis Hartenberger, 1965

G. tenuis Bahlo, 1975

Subfamily **GLIRINAE** Thomas. 1897 (Fig. 2)

Genus *Glis* Brisson, 1762

Type species: *Glis glis* (Linnaeus, 1766)

Other species: *G. apertus* Mayr, 1979

G. galitopous Van der Meulen & de Bruijn, 1982

G. guerbezi Unay, 1990

G. major de Bruijn & Riimke, 1974

G. minor Kowalski, 1956
A classification of the Gliridae (Rodentia) on the basis of dental morphology

Genus *Muscardinus* Kaup, 1829 (≡ *Eomuscardinus* Hartenberger, 1966; ≡ *Pentaglis* Kretzoi, 1943)
Type species: *M. avellanarius* (Linnaeus, 1758)
Other species:
- *M. cyclopeus* Agustí, Moya-Sola & Pons Moya, 1982
- *M. dacicus* Kormos, 1930
- *M. davidi* Hugueney & Mein, 1965
- *M. heintzi* Aguilar, 1981
- *M. helleri* Fejfar & Storch, 1990
- *M. hispanicus* de Brujin, 1966b (≡ *Muscardinus crusafonti* Hartenberger, 1966)
- *M. pliocaenicus* Kowalski, 1963
- *M. sansaniensis* (Lartet. 1851)
- *M. thaleri* de Bruijn, 1966a
- *M. vallesiensis* Hartenberger, 1966
- *M. vireti* Hugueney & Mein, 1965

Genus *Heteronzyades* Dehm. 1938
Type species: *H. wetzleri* (Schlosser, 1884)
Other species:
- *H. schwesseri* Dehm, 1950

Genus *Myoglis* Baudelot, 1965
Type species: *M. meini* (de Brujin, 1966a) (≡ *Myoglis larteti* Baudelot, 1965)
Other species:
- *Myoglis antecedens* Mayr, 1979

Genus *Glirudinus* de Brujin, 1966a (≡ *Muscardinus* Thaler, 1966)
Type species: *G. gracilis* (Dehm, 1950)
Other species:
- *G. euryodon* Van der Meulen & de Brujin, 1982
- *G. girulus* (Dehm, 1935)
- *G. minutus* Wu, 1993
- *G. modestus* (Dehm, 1950) (≡ *G. bouziguensis* (Thaler, 1966))
- *G. undosus* Mayr, 1979

Genus *Stertomyys* Daams & Freudenthal, 1985
Type species: *S. laticrestatus* Daams & Freudenthal, 1985

Subfamily DRYOMYINAE de Brujin, 1967
Genus *Dryomys* Thomas, 1906 (≡ *Afrodryomys* Jaeger, 1975)
Type species: *D. nitedula* (Pallas, 1778)
Other species:
- *D. ambiguus* Lavocat, 1961
- *U. chaabi* (Jaeger, 1977)
- *D. laniger* Felten & Storch, 1968

Genus *Elionzys* Wagner, 1840
Type species: *E. quercinus* (Linnaeus, 1766) (≡ *Elionzys melanus* Wagner, 1843)
Other species:
- *E. assimilis* Mayr, 1979
- *E. intermedius* Prian, 1953
- *E. reductus* Mayr, 1979
- *E. truci* Mein & Michaux, 1970

Genus *Leithia* Lydekker, 1895
Type species: *L. melitensis* (Adams, 1863)
Other species:
- *L. carrai* (Adams, 1863)

Genus *Graphiurus* Smuts, 1832
Type species: *G. ocularis* (Smith, 1829)
Other species:
- *G. murinus* (Desmarest, 1822)
- *G. parvus* (True, 1893)
Genus *Glirulus* Thonias, 1906
Type species: *G. japonicus* (Schinz, 1845) (= *G. elegans* 'l'emminck, 1845; = *G. lasiotis* Thomas, 1880)
Other species: *G. dirempitus* (Mayr, 1979)
G. ekremi Ünay, 1994
G. gemmula Kretzoi, 1962
G. lissiensis (Hugueney & Mein, 1965)
G. minor Wu, 1993
G. pusillius (Heller, 1936)

Genus *Hypnomys* Batc, 1918
Type species: *H. mahonensis* Batc. 1918
Other species: *H. elionzyoides* Agusti. 1980
H. noricensis Reunir. in press
H. waldreri Reumer, 1979

Genus *Microdyromys* de Bruijn, 1966 a
Type species: *M. koenigswaldi* de Bruijn, 1966 a
Other species: *M. complicatus* de Bruijn, 1966 a (= *Glirulus miocaenicus* Baudelot, 1965;
Paraglirulus scalabicensis Antunes & Mein, 1977)
M. legidensis Daams, 1981
M. monspeliensis Aguilar. 1977
M. orientalis Wu. 1986
M. praemurinus (Freudenberg, 1941)
M. sinuosus (Alvarez Sierra, 1986 in: Alvarez Sierra & Garcia Moreno, 1986)

Genus *Graphitirops* Bachmayer & Wilson, 1980
Type species: *G. orientalis* Bachniayer & Wilson. 1980

Genus *Paraglirulus* Engesser, 1972
Type species: *P. wrenfelsi* Engesser, 1972
Other species: *P. agelakisi* Van der Meulen & de Bruijn. 1982
P. conjunctus Mayr, 1979

Genus *Tyrrhenoglis* Engesser. 1976
Type species: *T. majori* Engesser, 1976
Other species: *T. figariensis* Zammit Maempel & de Bruijn, 1982

Genus *Maltamys* Zammit Maempel & de Bruijn, 1982
Type species: *M. gol cheri* (de Bruijn, 1966c)
Other species: *M. wiedinciensis* Zammit Maempel & de Bruijn, 1982

Genus *Anthracoglis* Engesser, 1983
Type species: *A. marinoi* Engesser, 1983

Genus *Eivissia* Alcover & Agusti, 1985
Type species: *E. canarreiensis* Alcover & Agusti, 1985

Genus *Chaetocnuda* Wang. 1985
Type species: *C. sichuanensis* Wang. 1985

Subfamily *MYOMIMINAE* Daams, 1981

Genus *Myomimus* Ognev. 1924 (= *Philistomys* Batc, 1937)
Type species: *M. personatus* Ognev. 1924 (= *M. setzeri* Rossolimo, 1976 a; = *M. bulgaricus* Rossolimo. 1976 b)
Other species: *M. compositus* (Bachniayer & Wilson, 1970)
M. dehni (de Bruijn. 1966 b)
M. martiensis de Bruijn. Dawson & Mein, 1970
M. qazzenis (Haas, 1973)
M. roachi (Bate, 1937) (= *Myomimus judaiicus* Tchernov, 1968)
M. sinensis Wu. 1985
M. sumbalenwalicus Munthc, 1980

Genus *Mio dyromys* Kretzoi, 1943
A classification of the Gliridae (Rodentia) on the basis of dental morphology

Type species: *M. hamadryas* (Forsyth Major, 1899)

Other species: *M. aegercii* (Baudelot, 1972)
 M. biradiculus Mayr, 1979
 M. hgueneyae Agusti & Arbiol, 1989
 M. praecox Wu, 1993
 M. prosper (Thaler, 1966)
 M. vagus Mayr, 1979

Genus *Peridyromys* Stichl & Schaub, 1951

Type species: *P. murinus* (Pomel, 1853) (= *Peridyromys occitanus* Baudelot & De Bonis, 1966)

Other species:
- *P. aquatilis* (de Bruijn & Moltzer, 1974)
- *P. columbarii* Daams, 1989
- *P. jaegeri* Agusti, 1974
- *P. ordinasi* Mein & Adrover, 1982
- *P. turbarus* Alvarcz et al., 1990

Genus *Dryomimus* Kretzoi, 1959

Type species: *D. eliomyoides* Kretzoi, 1959

Genus *Vasseuromys* Baudelot & De Bonis, 1966 (= *Szechenyia* Kretzoi, 1978; = *Ebrony* Cuenca, 1985)

Type species: *V. rugosus* Baudelot & De Bonis, 1966

Other species:
- *V. autolensis* (Cuenca, 1985)
- *V. bacchus* (Martinez-Salanova, 1987)
- *V. duplex* Únay, 1994
- *V. elegans* Wu, 1993
- *V. priscus* De Bonis, 1973

Genus *Pseudodryomys* de Bruijn, 1966

Type species: *P. ibericus* de Bruijn, 1966

Other species:
- *P. alpaphi* Hguenueny et al., 1978
- *P. juli Daams, 1989a
- *P. granatensis* Agusti 1993 in Martin Suarcz et al., 1993
- *P. rex* (Garcia Moreno 1986 in Alvarez Sierra & Garcia Moreno, 1986)
- *P. robustus* de Bruijn, 1967
- *P. simplicidens* de Bruijn, 1966
 (= *Psetrdodryomys meini* Adrover, 1978)

Genus *Praearmantomys* de Bruijn, 1966

Type species: *P. crusafont* de Bruijn, 1966 (= *P. ginsburgi* Antunes & Mein, 1971)

Genus *Armantomys* de Bruijn, 1966 (= *Quercyns* Lacomba & Martinez-Salanova, 1988)

Type species: *A. aragonensis*, de Bruijn, 1966

Other species:
- *A. bijiae* (Lacomba & Martinez-Salanova, 1988)
- *A. daamsi* (De Visser, 1990 in Alvarez et al., 1990)
- *A. jasperi* Daams, 1990
- *A. parsani* Daams, 1990
- *A. tricristatus* Lopéz, 1977 in Lopez et al., 1977

Genus *Nievella* Daams, 1976

Type species: *N. mayri* Daams, 1976

Genus *Tempestia* Van de Weerd, 1976

Type species: *T. hartenbergeri* (de Bruijn, 1966 b)

Other species:
- *T. ovils* Daams, 1989 a

Genus *Altomiramys* Diaz & Lopez, 1979

Type species: *A. daanisi* Diaz & Lopez, 1979

Genus *Propryomys* Mayr, 1979

Type species: *P. satus* Mayr, 1979

Other species:
- *P. gregarius* (Dehm, 1950)

Genus *Carbonmys* Mein & Adrover, 1982
Type species: *C. sacaresi* Mein & Adrover, 1982
Genus *Margaritamys* Mein & Adrover, 1982
Type species: *A4 lulli* Mein & Adrover, 1982
Genus *Ramys* Garcia Moreno & Lopcz Martinez, 1986
Type species: *R. multicrestatus* (de Bruijn, 1966b)
Other species: *R. perezi* Alvarez Sierra, 1986 (in Alvarez Sierra & Garcia Moreno, 1986)

Subfamily **BRANSATOGLIRINAE** nov. subfam.
Genus *Bransatoglis* Huguency, 1967 (= *Paraglis* Baudelot, 1970; = *Oligodyromys* Bahlo, 1975)
Type species: *B. concavidens* Huguency, 1967
Other species:
- *B. attenuatus* Pelaez-Campomanes, 1993
- *B. bahloi* Bosma & de Bruijn, 1982
- *B. cadeoti* Bulot, 1978
- *B. complicatus* Unay, 1994
- *B. fugax* (Huguency, 1967)
- *B. infralactorensis* (Baudelot & Collier, 1982)
- *B. moyai* (Huguency & Adrover, 1990)
- *B. parcus* Pelaez-Campomanes, 1993
- *B. planus* (Bahlo, 1975)
- *B. rimosus* Pelaez-Campomanes, 1993
- *B. sjeni* Unay, 1990
- *B. spectabilis* (Dehm, 1950)

STRATIGRAPHIC RANGES AND PHYLOGENETIC CONTEXT

The stratigraphic schemes used are the M.P. zonation for the Paleogene (Schmidt-Kittler, ed., 1987) and the M.N. zonation for the Neogene (de Bruijn et al., 1992). The zones MN2 and MN4 are each divided into a lower part (a) and an upper part (b) because the European fossil record shows major breaks within these units.

The nomenclature of parts of the Gliridae cheek teeth are after de Bruijn (1966), and slightly modified by Daams (1981) (Fig. 1).

Subfamily **GLIRAVINAE** Schaub, 1958

Range - Early Eocene (MP10) - Late Oligocene (MP30)

Characteristic features - Occlusal surface concave, main cusps well developed, ridges poorly developed, protocon of upper molars situated centrally.

This is considered to be the stemgroup of all Gliridae. *Eogliravus* with the most primitive dental pattern is known from the Lower and Middle Eocene of France (Thaler, 1966; Hartenberger, 1971) and the Middle Eocene of Spain (Pelaez-Campomanes, 1993). Hartenberger (1971) as well as Pelaez-Campomanes (1993) reached the conclusion that this genus is probably not the ancestor of *Gliravus*, but we think it is.

The oldest species of *Gliravus* is *G. robiacensis* Hartenberger, 1965 from the Upper Eocene of Robiac, the youngest representative is *G. bruijni* from Coderet. *Gliravus* is well represented in the Upper Eocene and Lower Oligocene of Western Europe. Shevyreva (1992) described *Chaibulakomys angos* from the Upper Eocene of Eastern Kazakhstan and assigned it to the Gliravinae. This taxon, based on one
P₄, is of uncertain affinity and considered a nomen dubium.

Skulls are known of the Gliravinae "Glamys" priscus from the Late Eocene and Early Oligocene, Gliravus itardiensis from the Early Oligocene, and Gliravus nzajori from the Late Oligocene. The first species is inyomorphous and the other two are protrogomorphous (Vianey-Liaud, 1989). We consider the protrogomorphous arrangement as the original character state of the Gliridae.

![Diagram of parts of the Gliridae cheek teeth](after Daams, 1981).

Subfamily **GLIRINAE** Thomas, 1897 (Fig. 3)

Range: Late Oligocene (MP28) - Recent

Characteristic features: Occlusal surface flat or slightly concave, main cusps weak or indistinct, crown and ridges low, extra ridges tend to be situated labially in the upper molars and lingually in the lower ones. Dental pattern usually complex. In several genera the roots are small and occupy a relatively central position. In these enamel continues on the lower side of the crown until it meets the roots.

The first record of this subfamily is Glirudinus glirulus from various Late Oligocene (MP28) localities of Western Europe (Gunzenheim, Germany; Dehm, 1935; St. Victor-la-Coste, S France; Hugueney, 1968 and Vivel del Rio, Central Spain; Hugueney et al., 1987). The dental pattern in this species is relatively simple, and the masticatory stroke in this genus is oblique to the longitudinal axis of the dentition. G. cf. gracilis from the Middle Miocene (MN6) of Anwil (Switzerland; Engesser, 1972) and Sansan (France; Engesser, 1972) is the last evidence of this genus in the fossil record. Geologically younger representatives of Glirudinus, G. modestus (MN2-MN4), G. undosus (MN4), and G. gracilis (MN3) have complex dental patterns.
Fig. 2 — Number of Gliridae species from the entire fossil and extant record. The number in each column refers to the maximum number of species per (sub)family and per zone.

The first evidence of Glis (*G. guerbuezi*) is from the Middle Oligocene of Kocayarma, Turkey (Unay, 1989). The dental features of this species are a mixture of those of its theoretical ancestor and those of *G. glis*. The dental pattern of *Glis*
A classification of the Gliridae (Rodentia) on the basis of dental morphology

apertus from the Early Miocene (MN1) of Weissenburg 6, S. Germany, (Mayr, 1979) is basically the same as that of extant *Glis*. In Miocene faunas this genus is rare. *Glis truyolsi* is known by two teeth from the Lower Miocene (MN2A) of Cetina de Aragon (Spain) and *Glis major* from the Lower Miocene (probably MN2) fauna of Oschiri (Sardinia, Italy) is represented by two teeth only. From the Pliocene onwards, *Glis* is common in central European, but absent or very rare in western European faunas.

Fig. 3 – Tentative reconstruction of the phylogenetic relationships of the genera of the Glirinae.
The first evidence of *Muscardinus (M. thaleri)* is from the Middle Miocene (MN4B) of Spain (Daams, 1985). The very low crowns are completely flat and the masticatory stroke is longitudinal. The dental pattern of *Muscardinus* is easily derivable from *Glirudinus*. During the Middle Miocene the genus is represented by *Muscardinus thaleri* in Spain and by *M. sansaniensis* in France and Central Europe. From the Vallesian onwards, several lineages have been recognized in Europe. The only extant representative is *M. avellanarius*. The *Muscardinus* from MN6 and MN7/8 have a somewhat more complex dental pattern than the extant species.

Myoglis sp. from the Lower Miocene (MN2B) of Lespignan (Aguilar, 1974) is the oldest record of this genus. Its ancestor is not known. *Myoglis* sp. has a simpler dental pattern and is somewhat smaller than the Middle Miocene *M. meini* from Manchones, Anwil and Sansan. The last occurrence is *Myoglis* sp. from the Upper Miocene (MN9) of Can Llobateres, Spain (Hartenberger, 1966). The lineage of *Myoglis* sp. - *M. antecedens* - *M. meini* is characterized by a trend towards increased size and towards a somewhat more complex dental pattern.

Heteromyxus has a short stratigraphic range (MN3-MN4A of S. France and S. Germany; Baudelot & Collier, 1982 and Dehm, 1950 respectively) and seems to be a descendant of *Myoglis*. The upper teeth of *Heteromyxus* and *Myoglis* are very similar, but in the lower cheek teeth of *Heteromyxus* the transverse ridges are connected by short longitudinal and oblique ridges.

Stiertonys laticrestatus from the Upper Miocene (MN13 ?) of Gargano (S. Italy) is an insular giant dormouse which is thought to have descended from *Glis* because in both genera the protoloph and metaloph end separately at the lingual border.

Subfamily **DRYOMYINAE** de Bruijn, 1967 (Figs. 4 and 5)

Range: Early Oligocene (MP24) - Recent

Characteristic features: Occlusal surface concave, extra ridges generally narrower than the main ridges, upper molars with endoloph. Dental pattern generally relatively complex.

The oldest representative of this subfamily is *Microdyromyzs praemurinus* from the Lower Oligocene (MP24) of Heimersheim (Germany). In the assemblage from the Lower Oligocene fauna of Montalbán (MP23, Spain) the endoloph of the upper molars may be complete or incomplete. This assemblage constitutes the transition between the Glirinae and the Dryomyinae morphotype. Until the end of the Oligocene *M. praemurinus* remains the only species of this subfamily. In the Lower Miocene *Microdyromyzs* is represented by *M. monspeliensis* and by *M. legidensis*. The last occurrence of *Microdyromyzs* is *M. sinuosus* from the Upper Miocene (MN10) of Ampudia, Spain (Alvarez Sierra et al., 1987).

The first evidence of *Elionyzs* is *E. truci* (Fig. 4) from the Middle Miocene (MN4B) of Spain (Daams & Freudenthal, 1988). The dental pattern of this species is not very different from *Microdyromyzs legidensis*. *Elionyzs truci* continues to be present until the Ruscinian (Van de Weerd, 1976 and Daams et al., 1988). Mayr (1979) described two *Elionyzs* species, *E. assimilis* and *E. reductus* from the Upper
Miocene of S. Germany, but it is not known whether or not these have anything to do with the later *E. intermedius*.

Fig. 4 – Tentative reconstruction of the phylogenetic relationships of the genera of the continental Dryomyinae.

The first evidence of *Dryomys* is from the Middle Miocene (MN6) of North Africa (Lavocat, 1961; Jaeger, 1975). Daams (1981) pointed out that the dental pattern of the two *Dryomys* species from Africa fall morphologically within the range of variation of extant *Dryomys nitedula*. *Dryomys* is thought to have descended from *Microdyromys*. *Dryomys* is extremely rare in the fossil record. The
oldest find in Europe may be that of *Dryomys* sp., from the Late Miocene (MN11) of Dorn-Durkheim (Franzen & Storch, 1975 and Daams, 1981).

The first evidence of *Glirulus* is *G*. aff. *ekremi* from the Lower Miocene (MN2) of Harami 1, Turkey (Ünay, 1994). The difference between *Glirulus* and *Paraglirulus* is extensively discussed in Van der Meulen & de Bruijn (1982). Mayr (1979) suggests that *Glirulus* is an off-shoot of *Microdyromys*, an opinion we share. Evolutionary trends in the dentition of *Glirulus* have not been observed. Information on the extant *G*. *japonicus* is given by Kawamura (1989) and Wahlert et al. (1993).

Fig. 5 – Tentative reconstruction of the phylogenetic relationships of the genera of the insular Dryomyinae.
A classification of the Gliridae (Rodentia) on the basis of dental morphology

The first record of *Paraglirulus* is *P. agelakisi* from the Lower Miocene (MN4A) of Aliveri, Greece (Van der Meulen & de Bruijn, 1982). The last occurrence is *P. werenfelsi* from the Late Miocene (MN9) of Can LLobateres, Spain (Fig. 4). Van der Meulen & de Bruijn (1982) suggest that *Paraglirulus* may have descended from either *Microdyromys* or *Bransatoglis*. The presence of a long, labially isolated, anterior centroloph in the upper cheek teeth and the symmetrical shape of M2 are reminiscent of *Bransatoglis*, but the regular shape and arrangement of the ridges, and the size of the teeth are more similar to *Microdyromys*. We therefore think that *Paraglirulus* is closer to *Microdyromys* than to *Bransatoglis*. *Paraglirulus* is more common in central Europe than it is in the Iberian Peninsula.

The isular dormice *Leithia*, *Hypnomys*, *Tyrrhenoglis*, *Maltamyx* and *Eivissia* (Fig. 5) are considered to have descended from *EZiomys* (Zammit-Maempel & de Bruijn, 1982; Alcover & Agustí, 1985). The insular *Anthracoglis* from the Upper Miocene of Baccinello (Italy) however, is more similar to *Microdyromys* (Engesser, 1983) and *Dryomys*. Since the last record of *Microdyromys* is from MN10 and thus older than *Anthracoglis* we think that it is most probable that *Anthracoglis* descended from *Dryomys*.

The first remains of *Graphiurus* date from the Plio/Pleistocene of Angola (Pickford et al., 1992) and Botswana (Pickford & Mein, 1988). The four extant species (Webb & Skinner, 1993) are all from Africa south of the Sahara. The Graphiurinae have a hystricomorphous skull (Wahlert et al., 1993) and not a myomorphous skull as most other Gliridae. The dental pattern resembles that of *Eliomys* which makes us postulate a direct relationship between the two genera (Fig. 3). We do not consider the hystricomorphous condition of *Graphiurus* to be the original character state for the Gliridae so there is no reason to suppose that the family reached Africa as early as the Paleocene.

The extant, monospecific genus *Chaetocauda* is only known by a few specimens from China. Wang (1985) assigns *Chaetocauda sichuanensis* to the Myorniminae but the presence of a continuous endoloph in the upper cheek teeth (Wang, 1985, Fig. 1), made us tentatively transfer it to the Dryomyinae. The general appearance of the ridge pattern is reminiscent of a simplified *Eliomys*.

Subfamily **MYOMIMINAE** Daams, 1981 (Figs. 6 and 7)

Range: Late Eocene (MP17) - Recent

Characteristic features: Occlusal surface concave, main cusps fairly well developed, extra ridges narrower than main ridges, relatively high-crowned molars in some genera, endoloph generally absent in M1₂, dental pattern from simple to very complex.

The first record of *Myomimus* is from the Lower Miocene (MN3) of Kilçak, Central Anatolia, Turkey (Unay, 1994), an area where the last representative of the genus, *M. personatus* is still living. *Myomimus dehmi*, a species with a relatively complex dental pattern arrived in central Spain during the Late Aragonian (Daams & Freudenthal, 1988) and is a common constituent of assemblages from the Lower Vallesian (MN9) of Europe. The genus seems to have become extinct in S.W.
Europe during the Mid-Vallesian crisis, but remains common in central and S.E. Europe until the Pleistocene. The evolutionary trend in the dental pattern is considered to be towards simplification (Daams, 1981), but new finds from the Late Turolian of Suleimanli (Central Anatolia) show that the history is more complex.

Fig. 6 – Tentative reconstruction of the phylogenetic relationships of the genera of the Myomiminae

Miodyromys is a genus the validity of which is still under discussion. Numerous species from the Upper Oligocene and Miocene are attributed to this genus. All these species have medium-sized teeth, two centrolophs in the upper molars and
A classification of the Gliridae (Rodentia) on the basis of dental morphology

one or more extra ridges in both upper and lower molars. The oldest species is *M. hugueneyae* from the Upper Oligocene (MP30) of Northern Spain (Agusti & Arbiol, 1989) and the youngest one is *M. hamadryas* from the Upper Miocene (MN9) of Can Ponsich (Fig. 7). The possible synonymy of *Miodyromys, Prodryonzys, Pseudodryomys* and *Peridyromys* is not discussed here because these genera are presently under study by the first author.

Peridyromys is the oldest genus of the Myomiminae (Figs. 6 and 7). Its teeth are relatively small, and its first representative has a moderately complex dental pattern (*P. murinus* from St. Victor-la-Coste and Coderet, Upper Oligocene (MP30), France; Hugueney, 1968, 1969: *P. columbarii* from the Upper Oligocene (MP30) of Sayatón 6, Spain (Daams, 1989 b). *Peridyromys* is thought to be the ancestor of a number of other genera such as *Armantomys, Praearmantomys, Pseudodryomys* etc. (see below). The last occurrence of *Peridyromys* (*P. murinus* is in MN4B of Spain (Daams & Freudenthal, 1988).

Dryomimus is hitherto represented by one species; *D. eliomyoides* from the Plio/Pleistocene of Hungary (Kretzoi, 1959) and Greece (de Bruijn & Van der Meulen, 1975). The general features of the simple dental pattern and the three-rooted lower molars suggest that it may have descended from *Myomimus*.

The first evidence of *Vasseuromys* is *V. priscus* in the Lower Miocene (MN1) of France (Baudelot & De Bonis, 1966) and Spain (Fig. 7) and *V. aff. duplex* in MN1 of Turkey (Unay, 1994). According to De Bonis (1973) *V. priscus* from MN1 would be the ancestor of *V. rugosus* from MN2B of France. Alvarez et al. (1990) discuss the characteristic features of *Vasseuromys* and express doubt about the allocation of the species *priscus* to *Vasseuromys*. A number of *Vasseuromys* species (*V. autolensis* from MN1 of Spain, *V. bacchius* from MN2A of Spain, *V. rugosus* from MN1-2B of France and Spain, *V. pannonicus* from MN11 of Central Europe) have a very complex dental pattern. *V. pannonicus* from the Upper Miocene (MN11) of Austria and Hungary is the last representative of the genus.

The first evidence of *Pseudodryomys* is from the Early Miocene (MN1) of central Spain (Daams et al., 1986 and Lacomba, 1988, unpublished thesis, Madrid). Several species of this genus are characterized by their simple dental pattern (*P. simplicidens, P. robustus* and *P. julii*), others have a more complex dental pattern (*P. ibericus, P. aljaphi* and *P. rex*). Some species, such as *P. simplicidens*, have a long stratigraphic range (MN2A-MN5), but others have a very short one (*P. julii; MN4A*). The genus *Pseudodryomys* is diverse and abundant in S.W. Europe and its last occurrence (*P. simplicidens*) is from the Middle Miocene (MN6) of S. Germany (Mayr, 1979).

Praearmantomys has been extensively discussed by Daams (1990). This monospecific genus with its simple dental pattern is exclusively known from the Lower Miocene (MN2B-MN4A) of central Spain and Portugal (Figs. 6). Its slightly hypsodont molars show a modest simplification through time. It is thought to have descended from *Peridyromys murinus*.

Armantomys has also been discussed in detail in Daams (1990). It is thought to have descended from *Peridyromys murinus*. The first occurrence of *Armantomys* is *A. cf. bijmai* from the Upper Oligocene (MP29) of the unpublished fauna of Parrales (Loranca Basin, Spain) and its last occurrence is *A. tricristatus* from the
Middle Miocene (MN7/8) fissure filling of Escobosa, Spain. Two lineages are recognized in this genus: the *A. bijmai - A. jasperi* lineage, characterized by relatively small teeth and the *A. aragonensis - A. tricristatus* lineage characterized by relatively large teeth. *Armantomys* has the most hypsodont cheek teeth of all Gliridae. Both lineages are characterized by a trend towards completion of the posterolophid of M3. Descendants are not known.

Nievella is represented by a few teeth from the Lower Miocene (MN2A) of Cetina de Aragon, Spain only (Daams, 1976). These teeth are relatively large and the dental pattern is moderately complex. Neither ancestors nor descendants are known (Fig. 6).

Tempestia is known by two species that succeed each other in time. *T. ovilis* makes its appearance in central Spain in MN4B and its successor *T. hartenbergeri* appears in MN7/8 of the same area. Hitherto this genus is not known outside the Calatayud-Teruel Basin. Its last occurrence is in the Late Vallesian (MN10) (Fig. 6). Evolutionary trends are towards a slight size increase, the loss of the anterior centroloph of the upper molars and the shortening of the centrolophid in the lower ones.

Altomiramys is known by *A. daamsi* from the Lower Miocene (MN2B) of central Spain only (Diaz Molina & Lopez Martinez, 1979 and Daams, 1989 a). Its simple dental pattern and low-crowned molars are reminiscent of *Pseudodryomys*, but it differs in the presence of a relatively long anterior centroloph, the absence of a posterior centroloph, the wide and shallow valleys, and the two-rooted lower molars. Unpublished *Altomiramys* teeth from MN1 and MN2A from central Spain show a close resemblance to *Peridyromys murinus*.

The validity of *Prodryomys* is still under discussion because of similarities with *Miodyromys* and *Pseudodryomys*. The first record of this genus is *Prodryomys brailloni* from MN2B of Bouzigues and the last representative (P. satus) is present in MN6 of Sandelzhausen. Mayr (1979) and Wu (1993) suggest that *P. satus* may be a descendant of *Prodryomys brailloni* from MN2B and MN3 of Western Europe. *Prodryomys satus* from MN6 of South Germany is supposed by Mayr (1979) to be the ancestor of *Dryomys*. However, the absence of an endoloph in most of the upper molars of *Prodryomys*, and the presence of *Dryomys* in MN6 in North Africa (Jaeger, 1975) make this improbable. Neither ancestors nor descendants of *Prodryomys* are known (Fig. 7).

Carbomys is known from the Middle Miocene of Mallorca, Spain only (Mein & Adrover, 1982) (Fig. 7). Its dental pattern can easily be derived from that of *Pseudodryomys ibericus* from the Spanish mainland. Features such as the posterior centroloph joining the metaloph midway, the relatively high-crowned teeth, the three-rooted second and third lower molars, the accessory ridge in the posterior valley, and the relatively large M3 are shared by *Carbomys sacaresi* and *P. ibericus*. The differences are in the large size of the cheek teeth and the relatively larger size of the premolars in *Carbomys*.

Margaritamys is present in the Middle Miocene of Mallorca only (Mein & Adrover, 1982). This genus may have descended from *Peridyromys murinus* (Fig. 7). Features that these two genera have in common are the simple dental pattern,
A classification of the Gliridae (Rodentia) on the basis of dental morphology

relatively high-crowned teeth and two-rooted lower molars. *Margaritamys* is larger and has higher crowned teeth than *P. murinus*

Fig. 7 – Tentative reconstruction of the phylogenetic relationships of the genera of the Myomirinae.

The first record of *Ramys* is *R. perezi* from MN9 of Ampudia 9, Duero Basin, Spain, and its last occurrence (*R. multicrestatus*) is in MN 10 from Torremormojon 1 in the same basin (Fig. 7). This genus is characterized by its medium-sized teeth and its relatively complex dental pattern. The lineage *R. perezi - R. multicrestatus*, (Alvarez Sierra and Garcia Moreno, 1986 and Garcia Moreno and López Martinez,
1986), shows tendencies towards a slight size decrease, a more complex dental pattern and the formation of a continuous endoloph in the upper cheek teeth through time.

Subfamily **BRANSATOGLRINAE** nov. subfam. (Fig. 8)

The diagnosis of the subfamily is the same as the emended diagnosis (Bosma & de Bruijn, 1982) of the type genus: The characteristic features of the dentition of *Bransatoglirinae* are:

1) the relatively large, rounded premolars
2) the strongly concave occlusal surfaces

Fig. 8 – Tentative reconstruction of the phylogenetic relationships of the *Gliridae* subfamilies.
3) the first and second molars which are long relative to the width
4) the presence of long extra ridges outside the trigone in the M1-2, and the
tendency to form a continuous endoloph in these teeth
5) the rounded shape of the M3, and the short, curving metaloph of that tooth.

Although none of the above dental features occurs exclusively in the
Bransatoglisinae, their combination is characteristic.

Type genus: Bransutoglis Hugueney, 1967
Type species of Bransatoglis: B. concavidens Hugueney, 1967
Range of the subfamily: Late Eocene (MP17) - Late Miocene (MN9)
Daams (1976) synonymized Paraglis Baudelot, 1970 with Bransatoglis and
Bosma & de Bruijn (1982) synonymized Bransatoglis with Oligodyromys Bahlo,
1975.

The dental pattern of early Bransatoglis species is not very different from that of
Gliravus. Vianey-Liaud (1989) noted a great resemblance between B. bahloii
from the Upper Eocene of the Isle of Wight and Gliravus itardiensis from the
Lower Oligocene of the Quercy (S France).

The geologically oldest Bransatoglis is B. bahloii from the Late Eocene (MP17)
of Headon Hill 3 (Island of Wight, England) and the last occurrence is B.
astaracensis from MN9 in Spain. During the Eocene/Oligocene transitional
interval various species of Bransatoglis were present in western Europe (Peláez-
Campomanes, 1993). Two lineages can be recognized during the Late Oligocene
and the Miocene of western and central Europe. Bransatoglis has, in our opinion,
not given rise to another genus. Daams (1981) assigned Bransatoglis to the
Dryomyinae, but new information clearly demonstrates its independent
evolutionary history. We therefore think that the systematic position of the group
within the dormice is best expressed by formally giving it the rank of subfamily.

CONCLUSIONS

The extant dormice are relics of a once very successful and diverse family. In
European Paleogene assemblages they are always present, but almost never
dominant. In the Early Miocene a massive adaptive radiation took place in Europe
(Fig. 2) and they formed there the major part of many rodent assemblages (Figs. 9
and 10). Up to 8 genera and 11 species may be present in one fauna (Fig. 9). Even
in faunas where Gliridae are rare, such as the ones from MN7/8 (Fig. 10), the
diversity may be high (Fig. 9). After the Early to Middle Miocene transitional
period dormice never regained the same position as they had before.

ACKNOWLEDGEMENTS – Rembert Daams dedicates this study to his family and gratefully
acknowledges the financial support by the D.G.I.C.Y.T. (projects PB85-0022, PB92-0013) and the
this review to his family and friends as a tribute for their support.
Fig. 9 – Relative abundance of Gliridae in 111 rodent assemblages from the Miocene in eastern central Spain.
A classification of the Gliridae (Rodentia) on the basis of dental morphology

Fig. 10 – Number of Gliridae genera and species in 111 rodent faunas from the Miocene in eastern central Spain.

REFERENCES

Sci. Lyon, 72: 3-47.

A classification of the Gliridae (Rodentia) on the basis of dental morphology

A classification of the Gliridae (Rodentia) on the basis of dental morphology

KRETZoi, M. 1959. Insectivoren, Nagetiere und Lagomorphen der jüngstpliozänen Fauna
A classification of the Gliridae (Rodentia) on the basis of dental inmorphology

A classification of the Gliridae (Rodentia) on the basis of dental morphology

331-363.

APPENDIX WITH ALPHABETICALLY ARRANGED GRIKIDAE GENERA, AND THEIR SPECIES

ALTOMIRAMYS DIAZ & LOPEZ. 1979

Original diagnosis, p. 158 (translated from Spanish): "A glirid of larger size than Pseudodryomys ibericus. Upper molars with subrounded outline, a low crown and concave occlusal surface. The ridges are thin and well-separated, with the anterior centroloph only, which joins the anteroloph in an arch-shaped ridge. The labial end of the posteroloph ends free. There is no continuous endoloph."

Type species, type locality and type level - Altomiramys daamsi Diaz & López, 1979; Loranca, Cuenca, Spain; MN2B, Early Miocene.

ANTHROACOS GLIS ENGESSER. 1983

Original diagnosis, p. 766 (translated from German): "Glirid of the same size as the extant Glis glis with very concave, massive cheek teeth; dental pattern is like that of Microdyromys; the upper and lower premolar are considerably molarized; M sup.: the anterior centroloph is longer than the posterior one, the anteroloph is lingually connected to the endoloph; the lingual border shows "ornamentation". M. inf.: the endolophid is generally interrupted, and the centrolophid is very long: the anterior and posterior valley each have an extra ridge; the metalophid, mesolophid and centrolophid join the endolophid.

Type species, type locality and type level: Anthracoglis marinoi Engesser, 1983; Baccinello V1, Italy; MN11 or MN12, Late Miocene

ARMANTOMYS DE BRUIJN 1966 a

Synonymy: Quercomys Lacomba & Martinez-Salanova. 1988

Original diagnosis. p. 5: "Large Gliridae with simple dental pattern consisting of ridges which are high relative to the crown basis. Occlusal surfaces concave. Metaloph and protoloph separated. M1 larger than M2".

Type species, type locality and type level - Armantomys aragonensis, de Bruijn, 1966 a; Villafeliche 2A, Zaragoza, Spain; MN4A, Early Miocene

Synonymy: Armantomys aragonensis giganteus de Bruijn, 1967 from Valdecmoros 1A

Other species of the genus:

Armantomys bijmai (Lacomba & Martinez-Salanova, 1988)
Type locality and type level - Quel 1. La Rioja, Spain; MN1, Early Miocene

Armantomys daamsi (De Visser. 1990 in Alvarez et al., 1990)
Type locality and type level - San Juan. Huesca, Spain; MN2B, Early Miocene

Armantomys jasperi Daams, 1990
Type locality and type level - Corcoles, Province of Guadalajara, Spain; MN4A, Early Miocene

Armantomys parsani Daams, 1990
Type locality and type level - Ramblar 1, Teruel, Spain; MN2B, Early Miocene

Armantomys tricristatus Lopez, 1977 in Lopez et al., 1977
Type locality and type level - Escobosa de Calatañazor, Soria. Spain; MN7/8, Middle Miocene

Synonymy: Armantomys aragonensis giganteus de Bruijn, 1967 from Las Planas 4A, Las Planas 4B and Manchones 1 in de Bruijn, 1967

BRUSATGOS GLIS HUGUENAY. 1967

Synonymy: Paraglis Baudelot, 1970; Oligodyromys Bahlo, 1975

Original diagnosis, p. 92 (translated from French): "Large-sized glirid resembling Glis glis Linné by the blunt aspect of its dental ridges, which are separated by narrow valleys, and by the higher lingual and labial borders. It differs from Glis glis by the strong concavity of the tooth, and by the low and numerous ridges. The upper molars show a tendency to form a continuous endoloph and in the lower
A classification of the Gliridae (Kodentia) on the basis of dental morphology

... the metalophid-metaconid connection is situated in an anterior position."

Emended diagnosis (Bosma & de Bruijn, 1982; p. 373): "The characteristic features of the dentition of Bransatoglis are:

1) the relatively large, rounded premolars
2) the strongly concave occlusal surfaces
3) the first and second molars which are long relative to the width
4) the presence of long extra ridges outside the trigone in the M1-2, and the tendency to form a continuous endoloph in these teeth
5) the rounded shape of the M3, and the short, curving metaloph of that tooth."

Type species, type locality and type level - Bransatoglis concavidens Hugueney, 1967; Coderet-Bransat, Allier, France; MP30, Late Oligocene

Synonymy: Bransatoglis fugax in Aguilar, 1974

Other species of the genus:

Bransatoglis astaracensis (Baudelot, 1970)
Type locality and type level – Sansan, France; MN6, Middle Miocene

Bransatoglis attenuatus Peláez-Campomanes, 1993
Type locality and type level – Aguaton, Teruel, Spain; MP21, Early Oligocene

Synonymy: Bransatoglis aff. planus in Anadón et al., 1983

Bransatoglis bahloii Bosma & de Bruijn, 1982
Type locality and type level – Headon Hill 3, Island of Wight, England; MP17, Late Eocene

Bransatoglis cadeoti Bulot, 1978
Type locality and type level – Bézian, France; MN4A, Early Miocene

Synonymy: Bransatoglis astaracensis in Mayr, 1979

Type locality and type level – Harami 1, Turkey; MN2, Early Miocene

Bransatoglis fugax (Hugueney, 1967)
Type locality and type level – Coderet, Allier, France; MP30, Late Oligocene.

Bransatoglis infralactorensis (Baudelot & Collier, 1982)
Type locality and type level – Estrepouy, France; MN3, Early Miocene

Bransatoglis cf. fugax in Van der Meulen & de Bruijn, 1982

Bransatoglis moyai (Hugueney & Adrover, 1990)
Type locality and type level – Sineu, Mallorca, Spain; MP25, Late Oligocene

Bransatoglis parcus Peláez-Campomanes, 1993
Type locality and type level – Olalla 4, Teruel, Spain; MP21, Early Oligocene

Bransatoglis planus (Bahlo, 1975)
Type locality and type level – Heimersheim, Germany; MP24, Early Oligocene

Bransatoglis rimosus Peláez-Campomanes, 1993
Type locality and type level – Olalla 4, Teruel, Spain; MP21, Early Oligocene

Bransatoglis sjeni Unay, 1990
Type locality and type level – Kocayarma, Turkey; Middle Oligocene

Bransatoglis spectabilis (Dehm, 1950)
Type locality and type level – Wintershof-West, Germany; MN3, Early Miocene

Synonymy: Glis spectabilis in Dehm, 1950

CARBOMYS MEIN & ADROVER, 1982

Original diagnosis, p. 456 (translated from French): "Giant Myomiminae with low crowns and molars with six ridges. The centrolophid joins the protoconid. Mesolophid and posterolophid are isolated..."
ridges. In the upper molars, the anteroloph and posteroloph are isolated. The P^4 is very large compared to the molars.

Type species, type locality and type level – Carhomys sacaresi Mein & Adrover, 1982; Santa Margarita, Mallorca, Spain; Middle Miocene

CHAETOCAUDA WANG, 1985

Original diagnosis, p. 74: "There is a dark chestnut around the eyes. Ears large, overing when lid forward to the eye. The terminal of tail is club shape, covered with dense hairs, and can not see the scale ring in external texture. The interorbited width is about one fifth of the greatest length of skull. Incisive foramina is long, its posterior edge extend back beyond half of alveolar of M1. The mesopterygoid fossa extend forward beyond the posterior half of of alveolar of M3, so the palate bone is pressed in square shape. The mandible gracile in appearance, coronoid process arc long and slender and the upper margin at the same plane as occlusal of the cheektooth. The upper incisors are deeply grooved in the center of surface and the cutting edge with a "V" shape notch. The upper molar has an endoloph which connect with the anteroloph and situate in the inner side of the first upper molar."

Type species and type locality – Chaetocauda sichuanensis Wang, 1985: Wang-lang Natural reserve? Pinwu County, Northern Sichuan, China; Recent

DRYOMIMUS KRETZOI, 1959

Original diagnosis, p. 240 (translated from German): "P^4 rather little reduced, upper molars with - Miodromys like - lingually separated protoloph, and uncomplicated dental pattern as in Dryonzyys. On the other hand, the lower molars have features that are between Dryomyys, Myomimus and Peridromys.

Type species, type locality and type level: Dryomimus eliomyoides Kretzoi, 1959; Csarnota, Hungary: MN 15. Pliocene

DRYOMYS PALLAS, 1778

Synonymy: Afrodryomys Jaeger, 1975

Diagnosis in Ellerman, 1941, p. 618, as far as the teeth are concerned: "Very closely related to Eliomyys; upper cheek teeth less concave; the main cusps arranged as in Eliomyys; five main transverse ridges in upper teeth, the main cavitral depression with quite well-marked ridge, this vestgial in Eliomyys; premolar more reduced, not strongly cuspidate. Lower molars with four main ridges, and three rudimentary ones between them. Premolar reduced, and simple.

Type species and type locality: Dryomys nitedula (Pallas, 1778); Recent

Other species of the genus:

Dryomys ambiguus Lavocat, 1961
Type locality and type level – Beni Mellal, Morocco; MN7/8, Middle Miocene

Dryomys chaabi (Jaeger, 1977)
Type locality and type level – Oued Zra, Algeria; MNIO, Late Miocene

Dryomys laniger Felten & Storch, 1968
Type locality – Bey Mountains, Turkey; Recent

EIVISSIA ALCOVER & AGUSTI, 1985

Original diagnosis, p. 52 (translated from Catalan): "Large-sized Dryomyinae. The upper molars have a continuous endoloph. Distinct paracone and metacone. The posterior centroloph is present."

Type species, type locality and type level: Eivissia canarreiensis Alcover & Agusti, 1985; Cova de Ca Na Reia, Island of Ibiza, Spain; Plio-Pleistocene

ELIOMYS WAGNER, 1840

Diagnosis in Ellerman, 1941, p. 615, as far as the teeth are concerned: "Cheekteeth with crowns concave: in upper series, there are two high main cusps on the outer side, and one on the inner side;
and four main transverse ridges are present, separating three depressions, the general effect reminiscent of that of Sciuridae. P^4 slightly smaller than the molars, well cusped. M^2 slightly smaller than M^3. Lower molars with three outer and two inner cusps; more basin shaped than the upper teeth; four main ridges present, the anterior and posterior of which form the terminal margins of the teeth. Premolars with three cusps, one each side, one anteriorly, and with one ridge."

Type species – *Elioniys quercinus* (Linnaeus, 1766)

Synonymy: *Elioniys melanurus* Wagner, 1843

Other species of the genus:

Elioniys assinilis Mayr, 1979

Type locality and type level – Hammerschmiede, Germany; MN9, Late Miocene

Elioniys intermedius Friant, 1953

Type locality and type level – Sète, France; MN15, Pliocene

Elioniys reductus Mayr. 1979

Type locality and type level – Hammerschmiede, Germany; MN9. Late Miocene

Elioniys truci Mein & Michaux, 1970

Type locality and type level – Hautimagne, France; MN14, Pliocene

EOGLIRAVUS* Hartenberger, 1971

Original diagnosis, p. 112 (translated from French): "Primitive Gliravinae with a sinuous protoloph and metaloph."

Type species, type locality and type level – *Eoglaravis hammelii* (Thaler, 1966); Bouxwiller, France; MP13, Middle Eocene

Other species included:

Eoglaravis molzeri Pelaez-Camponanes, 1995

Type locality and type level – Casa Ramón, Spain; MP1, Middle Eocene

Eoglaravis wildi Hartenberger, 1971

Type locality and type level – Mas de Gimel, France; MP10, Early Eocene

GLIRAVUS Stehlin & Schaub, 1951

Synonymy: *Glaniys*. Vianey-Liaud (1989) created *Glaniys* on the basis of distinctive cranial features, although the teeth cannot be differentiated from *Gliravus*. We do not deny the importance of cranial features in taxonomy, but as our classification is exclusively based on the dental pattern, we cannot avoid that *Glaniys* becomes a junior synonym of *Gliravus*.

Original diagnosis, p. 368 (translated from German): "Brachyodont, with two premolars in the maxilla. Upper molars trigonodont with simple and small mesostyl. Borders of trigone without intermediate cusps. Lower molars with four cusps and isolated mesoconid. Mesolophid is not yet developed. Paraconid separated from protoconid, like in *Sciurus vulgaris*.

Type species, type locality and type level – *Gliravus majori* Stehlin & Schaub, 1951; Quercy, France; Late Oligocene

Other species included:

Gliravus alvarezae Lacomba & Morales, 1987

Type locality and type level – Carrascosa del Campo, Cuenca, Spain; MP25, Late Oligocene

Synonymy: *Gliravis aff. bruijni* in Agusti et al., 1985

Gliravus bravoi Hugueney, Adrover & Moissenet, 1985

Type locality and type level – Vivel del Rio, Teruel, Spain; MP28, Late Oligocene

Gliravus bruijni Hugueney, 1967

Type locality and type level – Coderet, France; MP30, Late Oligocene

Type locality and type level – Pareja, Guadalajara, Spain; MP25, Late Oligocene

Gliravus daamsi Bosma & de Bruijn, 1982
Type locality and type level – Headon Hill 2, Island of Wight, England; MP17, Late Eocene

Gliravus devoogdi Bosma & de Bruijn, 1979
Type locality and type level – Headon Hill 7, Island of Wight, England; MP19, Late Eocene

Gliravus fodi Bosma & de Bruijn, 1979
Type locality and type level – Bouldnor Cliff, Island of Wight, England; MP21, Early Oligocene

Gliravus itardiensis Vianey-Liaud, 1989
Type locality and type level – Itardies, France; MP23, Early Oligocene

Gliravus meridionalis Hartenberger, 1971
Type locality and type level – Fons 4, France; MP17, Late Eocene

Gliravus miccio (Misonne, 1957)
Type locality and type level – Hoogbutscl, Belgium; MP21, Early Oligocene

Gliravus minor Bosma & de Bruijn, 1982
Type locality and type level – Headon Hill 2, Island of Wight, England; MP17, Late Eocene

Gliravus priscus Stehlin & Schaub, 1951
Type locality and type level – La Débruge, France; MP18, Late Eocene

Gliravus robiacensis Hartenberger, 1965
Type locality and type level – Robiac Sud, Gard, France; MP16, Late Eocene

Gliravus temuis Bahlo, 1975
Type locality and type level – Heimersheim, Germany; MP23, Early Oligocene

GLIRUDINUS DE BRUIJN, 1966 a
Original diagnosis; p. 16: "Small Gliridae with extremely low-crowned cheek teeth. Occlusal surface slightly concave. Numerous low and narrow enamel ridges, that form an angle of approximately 45° with the longitudinal axis of the teeth."
Type species, type locality and type level – *Glirudinus gracilis* (Dehm, 1950); Wintershof-West, Bavaria, Germany; MN3, Early Miocene

Other species included:

Type locality and type level – Kilca 0*, Turkey; ?MN1, Early Miocene

Glirudinus euryodon Van der Meulen & de Bruijn, 1982
Type locality and type level – Aliveri, Island of Evia, Greece; MN4A, Early Miocene

Glirudinus glirulus (Dehnh, 1935)
Type locality and type level – Gunzenheim, Germany; MP30, Late Oligocene

Type locality and type level – Harami 1, Turkey; MN2, Early Miocene

Glirudinus minutus Wu, 1993
Type locality and type level – Petersbuch 2, Germany; MN4A, Early Miocene

Glirudinus modestus (Dehm. 1950)
Type locality and type level – Wintershof-West, Bavaria, Germany; MN3, Early Miocene
Synonymy: *Muscardinus (Muscardinulus) bouziqungis* in Thaler (1966)

Glirudinus undosus Mayr, 1979
Type locality and type level – Erkertshofen, Germany, MN4A, Early Miocene

GLIRULUS THOMAS. 1906

Synonymy *Amphidyromys* Heller. 1936

Emended diagnosis (Van der Meulen & de Bruijn, 1982; p. 489): "Small to medium-sized Dryomyinae with usually 9 transverse ridges and an endoloph in their upper molars. The labial ends of anteroloph and posteroloph are as high as paracone and metacone. The anterior centroloph is connected to the endoloph in all but the earliest species. An endolophid may be present in the lower molars."

Type species and type locality – *Glirulus japonicus* (Schinz, 1845); Japan, Recent

Other species of the genus:

Glirulus conjunctus Mayr, 1979
Type locality and type level – Marktl, Germany; MN9, Late Miocene

Glirulus direuptus (Mayr, 1979)
Type locality and type level – Erkertshofen, Bavaria, Germany; MN4A, Early Miocene

Glirulus ekremi Üney, 1994
Type locality and type level – Kcserekoy, Turkey; MN3, Early Miocene

Glirulus gemmula Kretzoi, 1962
Type locality and type level – Csarnota 2, level 15, Hungary; MN15, Pliocene

Glirulus lissiensis (Hugueney & Mein, 1965)
Type locality and type level – Lissieu, France; MN13, Late Miocene

Glirulus minor Wu, 1993
Type locality and type level – Pctersbuch 2, Germany; MN4A, Early Miocene

Glirulus pusillus (Heller, 1936)
Type locality and type level – Gundersheim, Germany; MNI5?, Pliocene

GLIS BRISSON, 1762

Diagnosis in Ellerman, 1941, p. 622. as far as the teeth are concerned: "Cheek teeth simpler than in *Eliomys*, more flat; the outer side of upper series with five low cusps, the inner side with four. M1 and M2 with seven transverse ridges of which four are well developed, the three alternating between them weaker. P4 considerably smaller than the other teeth, and with its elements reduced. Lower teeth like the upper series in general arrangement."

Type species and type locality: *Glis glis* (Linnaeus, 1766); Germany, Recent

Other species of the genus:

Glis apertus Mayr, 1979
Type locality and type level – Weissenburg 6, Germany; MN1, Early Miocene

Glis galitopouli Van der Meulen & de Bruijn, 1982
Type locality and type level – Aliveri, Island of Evia, Greece; MN4A, Early Miocene

Glis guerbuezi Üney, 1989
Type locality and type level – Kocayarma, Thrace, Turkey; Middle Oligocene

Glis major de Bruijn & Rümke, 1974
Type locality and type level – Oschiri, Sardinia, Italy; MN2, Early Miocene

Glis minor Kowalski, 1956
Type locality and type level – Podlcsicc, Poland; MN14, Pliocene

Glissackdillingensis (Heller. 1930)
Type locality and type level – Cave of Sackdilling, Germany; Pleistocene

Glis sussenbornensis Soergel, 1919
Type locality and type level – Sussenborn, Germany; Pleistocene

Glis transversus Unay, 1994
Type locality and type level – Harami 1, Turkey: MN2. Early Miocene

Glis truyolsi Daams, 1976
Type locality and type level – Cetina de Aragon, Zaragoza, Spain; MN2.4, Early Miocene

Glis vallesiensis Agustí, 1981a
Type locality and type level – Ballestar, Lérida, Spain; MN9. Late Miocene

GRAPHIUROPS BACHMAYER & WILSON, 1980

Type species: type locality and type level: *Graphiurus austriacus* Bachmayer & Wilson, 1980; Kohfidisch, Austria: MN10. Late Miocene

GRAPHIURUS SMUTS, 1832
Diagnosis in Ellerman, 1941, p. 604, as far as the teeth are concerned: "Crowns of cheek teeth concave, with low main external cusps; the general arrangement in pattern evidently near *Eliomys*, but the ridges in most indistinct, and a general tendency towards simplification. The premolars are usually only moderately reduced; but in the type species are strongly reduced."
Type species and type locality – *Graphiurus ocularis* (Smith, 1829); Recent
Other species included:

Graphiurus parvus (True, 1893)
Type locality – Tana River, Kenya; Recent

Graphiurus murinus (Demsarest. 1822)
Type locality – Cape Colony, South Africa; Recent

Graphiurus platyops Thomas, 1897
Type locality – Enkeldoorn, Mashonaland. Sout Africa; Recent

HETEROMYXUS DEHM, 1938

Original diagnosis (translated from German): "Gliridae with low-crowned, large molars and longitudinal connections between the ridges in the lower molars,"
Type species, type locality and type level: *Heteromyxus wetzleri* (Schlosser, 1884); Eggingen, Germany; MN3, Early Miocene.
Other species of the genus:

Heteromyxus schlosseri Dehm, 1950
Type locality and type level – Wintershof-West, Bavaria, Germany; MN3, Early Miocene

HYPNOMYS BATE, 1918

Original diagnosis, p 210-211: "Skull, mandible and limb-bones as in *Eliomys* but more robust; interorbital region wide and anterior portions of frontals greatly expanded. The infraorbital foramen opens anteriorly and the outer wall of the infraorbital canal is very robust with a wide base. The anterior palatine foramina penetrate for some distance the palatal plate of the maxillae which forms the greater portion of the palate. The angle of the mandible is perforated. Dental formula 1 1 3 for both upper and lower tooth rows, molariform premolars and molar crowns sub-quadrate in shape with low transverse ridges. Upper molars with one large wide internal and two smaller external roots. In
A classification of the Gliridae (Rodentia) on the basis of dental morphology

the first and second lower molars the two posterior roots may be confluent for the greater part of, or for their entire length: the last molar has two anterior and one large posterior root. Tibia and fibula joined."

Type species: type locality and type level – Hypnonzys mahonensis Bate, 1918; Menorca, Spain; Pleistocene

Other species included:

Hypnonzys elionyoides Agusti, 1980
Type locality and type level – Menorca, Spain; Pleistocene

Hypnonzys onicensis Reumer, in press
Type locality and type level – Mallorca, Spain; Pleistocene

Hypnonzys morpheus Bate, 1918
Type locality and type level – Mallorca, Spain; Pleistocene

Hypnonzys waldreni Reumer, 1979
Type locality and type level – Cap Farrutx, Mallorca, Spain; Early Pleistocene

LEITHIA LYDEKKER, 1895

Original diagnosis (p. 862):"specialized Sciuromorpha with squared upper molars bearing from four to five simple, low, parallel transverse ridges. three of which rise from the postero-internal angle or inner side of the crown, while the remainder are shorter and are formed by a single or double splitting of the more anterior of the two hind-most enamel folds. There is no trace of the presence of more than one pair of upper premolars. The palatine foramina are elongated, and the tibia and fibula united. Whether the skull had the well-developed postorbital processes characterizing existing Squirrels, I am unable to determine: but it was evidently constricted in the orbital region, like Sciurus, and thus unlike that of Xerus. The restoration of the lower jaw given by Leith Adams is probably incorrect. It is certain that Leithia does not belong to the Myomorpha, and I do not think the features in which it differs from other Sciuromorpha are sufficient to justify its reference to a suborder by itself."

Type species, type locality and type level – Leithia melitensis (Adams, 1863) Malta; Pleistocene

Other species included:

Leithia cartei (Adams, 1863)
Type locality and type level – Malta; Pleistocene

MALTAMYS ZAMMIT MAEMPEL & DE BRUIJN, 1982

Original diagnosis. p. 118: "Medium to large sized Dryomyinae, the occurrence of which is restricted to Malta and Sicily. The endolophid of the lower molars is almost always interrupted between the metaconid and entoconid. The M1-2 always have two extra ridges outside the trigone and almost invariably have the posteroloph separate from the endoloph. The angular portion of the lower jaw is perforated."

Type species, type locality and type level: Maltamys gollcheri (de Bruijn, 1966c); Mnaidra Gap, Malta; Pleistocene

Other species included:

Maltamys wiedincitensis Zammit Maempel & de Bruijn, 1982
Type locality and type level – Wied Incita, Malta; Late Pleistocene

MARGARITAMYS MEIN & ADROVER, 1982

Original diagnosis. p. 457: "Large sized Myomiminae. Cheek teeth with unilateral high crowns (the maximum height is observed below the lingual part of the anteroloph, and not below the protocone as in Armandtonys). Upper molars with 6 ridges, and lower molars with 5. The centrolophid joins the mesolophid."

Type species, type locality and type level – Margaritamys Ilulli Mein & Adrover, 1982; Santa Margarita, Mallorca, Spain; Middle Miocene
MICRODYROMYS DE BRUIJN. 1966 a

Synonymy: *Myolidus* Alvarez Sierra, 1986 in: Alvarez Sierra & García Moreno, 1986

Original diagnosis. p. 11: "Small Gliridae with cheek teeth that have a concave occlusal surface. Lingual side of upper cheek teeth ornamented. The four main ridges of M¹, M² and M³ are connected to an endoloph. Anterior centroloph of M¹ and M² longer than the posterior centroloph. P⁴ and M³ relatively large compared to other genera. The accessory ridges are lower than the main ridges."

Type species, type locality and type level – *Microdyromys koenigswaldi* de Bruijn, 1966a; Valdemoros 3B, Zaragoza. Spain; MN4B. Middle Miocene

Synonymy: *M. praemurinus* in Legendre. 1982

Other species included:

Microdyromys complicatus de Bruijn, 1966a

Type locality and type level – Armantes 7, Zaragoza. Spain; MN6, Middle Miocene

Synonymy: *Glirulus miocaenicus* Baudelot, 1965; *Paraglirulus scalabicensis* Antunes & Mein, 1977 from Pero Filho, Portugal

Remarks: In 1965 Baudelot described *Glirulus miocaenicus* from Sansan (France), which is the same as *Microdyromys complicatus*. As Baudelot's paper is antedated and came out in 1966 and as de Bruijn's postdated paper came out in 1965, the name *complicatus* has priority.

Microdyromys legidensis Daams, 1981

Type locality and type level – Villafeliche 2A, Zaragoza, Spain; MN4A, Early Miocene

Synonymy: *M. aff. koenigswaldi* in Aguilar. 1974

Microdyromys monspeliensis Aguilar. 1977

Type locality and type level – Nouvelle Faculté Medicine, Hérault, France; MNI, Early Miocene

Microdyromys orientalis Wit, 1986

Type locality and type level – Xiaocowan. Jiangsu. China; Middle Miocene

Microdyromys praemurinus (Freudenberg, 1941)

Type locality and type level – Gaimersheim, Germany: MP28, Late Oligocene

Type locality and type level – Ampudia 3, Valladolid. Spain; MNIO, Late Miocene

MIODYROMYS KRETZOI, 1943

Original diagnosis absent in Kretzoi (1943).

Diagnosis (Baudelot, 1972, p. 328). Translated from French: "*Miodyromys* differs from *Peridyromys* by the morphology of the upper molars in which the trigone has a U-shape, marked by the protoloph and metaloph joining separately the lingual border. *Miodyromys* differs from *Pseudodyromys* de Bruijn, 1966 a by its more numerous ridges, by the metaloph and protoloph joining the endoloph separately, whereas in *Pseudodyromys* these two ridges meet before reaching the lingual border."

Emended diagnosis of *Miodyromys* (Mayr, 1979, p. 151). Translated from German: "Medium-sized Gliridae with concave occlusal surface. M¹² with 6 main ridges. The anterior centroloph is longer than the posterior one. The anterior centroloph may fuse with the posterior one, or one or both of the centrolophs may fuse with extra ridge(s). But none of the centrolophs fuse with the middle part of the metaloph. Extra ridges are only present in the trigone, and they vary from zero to three. There is always one accessory ridge between the main ridges. The anteroloph and posteroloph are isolated at the labial border. Protoloph and anterior centroloph are labially either connected or separated. Protoloph generally connected to the lingual end of the posteroloph. M₁₂ two- or three-rooted. with 5 main ridges, and one to four extra ridges. The accessory ridge between mesolophid and posterolophid is stronger and longer than the other accessory ones."

The emended diagnosis of Mayr is not correct. He says that 6 main ridges are present, and that there is always one extra ridge between the main ridges. That implies that there are at least 5 extra ridges in every species of the genus, which is not the case. According to his diagnosis *Miodyromys* would differ from *Pseudodyromys* by the centrolophs never reaching the metaloph in the centre of the tooth. This feature, is highly variable in *Pseudodyromys ibericus*. In the older assemblages the centrolophs...
A classification of the Gliridae (Rodentia) on the basis of dental morphology

do not generally join the metaloph whereas in younger ones this occurs more frequently.

Type species, type locality and type level – *Miodyromys hamadryas* (Forsyth Major, 1899); Grosslappen, Bavaria, Germany; MN7/8, Middle Miocene

Synonymy: *Elomys* from La Grive in Major, 1899

Other species included:

Miodyromys aegrecii (Baudelot, 1972)

Type locality and type level – Sansan, Gers, France; MN6, Middle Miocene

Synonymy: *Dryomys hamadryas* in Baudelot, 1965; *Miodyromys cf. ibericus* in Ginsburg & Sen, 1977

M. biradiciculos Mayr, 1979

Type locality and type level – Wintershof-West, Germany; MN3, Early Miocene

M. huguenyae Agusti & Arbiol, 1989

Type locality and type level – Fraga 11, Ebro Basin, Spain; MP30, Late Oligocene

M. praecox Wu, 1993

Type locality and type level – Stubersheim 3, Germany; MN3, Early Miocene

M. prosper (Thaler, 1966)

Type locality and type level – Bouzigues, Hérault, France; MN2B, Early Miocene

M. vagus Mayr, 1979

Type locality and type level – Hesselohe, Germany; MN5, Middle Miocene

MUSCARDINUS KAUP, 1829

Synonymy: *Eomuscardinus* Hartenberger, 1966; *Pentaglis* Kretzoi, 1943

Diagnosis in Ellerman, 1941, p. 625, as far as the teeth are concerned: "P4 very small indeed. M1 conspicuously larger than M2, with five well-developed ridges, the depressions between them very broad; the ridges oblique, the tooth lengthened: M2 with seven transverse ridges, the depressions between them narrow; M3 like M2 but smaller, with ridges less developed. P4 usually with two ridges. In the lower cheekteeth there are six ridges extending across each tooth except the much reduced premolar; the lower first molar is less enlarged than the upper first molar, and its ridges less oblique."

Hartenberger (1966) described *Eomuscardinus* as a new subgenus of *Muscardinus* and considered it the ancient stock of the genus. This new subgenus would have a relatively large P4 compared to the more modern *Muscardinus* species, and *Muscardinus thaleri* was not included in it. As far as the complexity of the dental pattern is concerned no difference is observed between the Middle Miocene *M. thaleri* and *M. sansaniensis*. We do not think that the relative size of P4 is sufficient to warrant subgeneric separation and consider *Eomuscardinus* a junior synonym of *Muscardinus.*

Type species and type locality – *Muscardinus avellanarius* (Linnaeus, 1758); Sweden, Recent

M. cyclopeus Agusti, Moya-Sola & Pons Moyá, 1982

Type locality and type level – Cala Es Pou, Menorca, Spain; Pleistocene

M. dacicus Kormos, 1930

Type locality and type level – Betfia (= Püspökfürdö), Hungary; Pleistocene

M. davidii Hugueney & Mein, 1965

Type locality and type level – Lissieu, Rhône, France; MN13, Late Miocene

M. heintzi Aguilar, 1981

Type locality and type level – Montredon, Hérault, France; MN10, Late Miocene

M. helleri Fejfar & Storch, 1990

Type locality and type level – Gundersheim, Germany; MNI 5, Pliocene

M. hispanicus de Bruijn, 1966b

Type locality and type level – Pedregueras 2C, Zaragoza, Spain; MN9, Late Miocene
Synonymy: *Muscardinus crusafonti* Hartenberger: 1966 from Can Llobateres

Muscardinus plicacenicus Kowalski, 1963
Type locality and type level – Weze, Poland; MN15, Pliocene

Muscardinus sansaniensis (Lartet, 1851)
Type locality and type level – Sansan, France; MN6. Middle Miocene

Muscardinus thaleri de Bruijn, 1966a
Type locality and type level – Manchones, Zaragoza, Spain; MN6, Middle Miocene

Muscardinus vallesiensis Hartenberger, 1966
Type locality and type level – Can Llobateres, Barcelona, Spain; MN9, Late Miocene

Muscardinus vireti Hugueney & Mein, 1965
Type locality and type level – Lissieu, Rhône, France; MN13, Late Miocene

MYOGILIS BAUDELLOT, 1965

Original diagnosis, p. 761 (translated from French) (It is not clear if the diagnosis given by Baudelot refers to that of the genus or to the species *Myoglis lartetii*): "Large-sized Gliridae which resemble *Muscardinus* because of the flat occlusal surface, but from which it is different in the following features; the V-shape of the trigone, the incomplete mesoloph that converges towards the postcro-lingual border, and the four isolated oblique ridges of the lower molars, separated from each other by deep valleys."

Type species, type locality and type level – *Myoglis nzeini* (de Bruijn. 1966a); Manchones, Zaragoza, Spain; MN6. Middle Miocene

Synonymy: *Myoglis lartetii* Baudelot, 1965. In 1965 Baudelot described *M. lartetii* from Sansan (France), which is the same as *M. nzeini*. As Baudelot’s paper is antedated and came out in 1966 and as de Bruijn’s postdated paper came out in 1965, the name nzeini has priority. Genrcally *Pentagliss* Kretzoi, 1943 was considered to be a synonym of *Myoglis*. However, the specimen figured (an M instead of an M’) by Kretzoi (1943) does not show any resemblance to *Myoglis*. The small size of the only tooth, and the transverse ridges connecting separately to the endoloph, show that this tooth belongs to *Muscardinus*.

Other species included:

Myoglis untecedens Mayr, 1979
Type locality and type level – Erkertshofen, Germany; MN4A, Early Miocene

MYOMIMUS OGNEV. 1924

Synonymy: *Philistomys* Bate, 1937
Original diagnosis, p. 545-546: "No darkening around cycs and ears (neither stripe nor spot present). Tail thin, as in rats, covered with very short, even white hair growing thickly along tail shaft; rings on skin visible with lens. Skull elevated on line of upper profile, and markedly shortened rostrally. Occipital region rounded. Interorbital region somewhat compressed due to oval elongated depressions near basis of nasals, i.e., at the anterior part of infraorbital region. Auditory bullae large and inflated, much larger than in *Muscardinus*. Jugal bone forms sharp process protruding anteriorly and not quite reaching lateral contour of lacrimal. Infraorbital foramen very small and narrow. Appreciably smaller than in Muscardinus (figs. 205-206). Angular process of lower jaw with small round aperture in wall.

Crowns of molars flat, inner and outer margins not elevated (fig. 254). Crowns of M and M of very similar structure, caci with five transverse enamel folds: first two fairly long with inner margins pointing posteriorly; next two folds form deep bend reaching middle of tooth; last (fifth) fold extends along posterior margin of tooth, its inner tip bending somewhat anteriorly. This crown structure little resembles that of other dormice. Premolar of lower jaw small, its outer margin directed obliquely anteriad. Four transverse ridges on surface, two internal ones forming closed arching protrusions directed posteriorly. Premolar of lower jaw small, below level of rest of toothrow (differing in this
A classification of the Gliridae (Rodentia) on the basis of dental morphology

from other dormice); three barely visible ridges on surface."

Description of the penis is outside the scope of this study.

Type species and type locality – *Myomimus personatus* Ognev, 1924; Kopet Dagh Mountains, U.S.S.R., Recent

Synonymy: *M. setzleri* Rossolimo, 1976 a; *M. bulgaricus* Rossolimo, 1976 b

Other species included:

Myomimus compositus (Bachmayer & Wilson, 1970)
Type locality and type level – Kohfidisch, Austria; MNI1, Late Miocene

Myomimus dehmi (de Bruijn, 1966 b)
Type locality and type level – Pedregueras 2C, Zaragoza, Spain; MN9, Late Miocene

Synonymy: *Peridyromys dehni nominalis* de Bruijn, 1966 b *Peridyromys sp.* in Daxner-I lock, 1970

Myomimus maritsensis de Bruijn, Dawson & Mein, 1970
Type locality and type level – Maritsa, Island of Rhodes, Greece; MN15, Pliocene

Myomimus qafzensis (Haas, 1973)
Type locality and type level – Qafzeh Cave. Israel; Pleistocene

Myomimus roachi (Bate, 1937)
Type locality and type level – Tabun Cave. Israel; Pleistocene

Synonymy: *Myomimus judaicus* Tchernov, 1968

Myomimus sinensis Wu. 1985
Type locality and type level – Erdente 2. Inner Mongolia, China; Upper Turolian or Ruscinian

Myomimus sumbalenwalicus Munthe, 1980
Type locality and type level: H-GSP locality 18, upper Chinji Formation, Pakistan, Late Miocene

NIEVELLA DAAMS, 1976

Original diagnosis, p. 156: "Large glirids with high and wide ridges and an oblique V-shaped trigone in the upper molars."

Type species, type locality and type level – *Nievella mayri* Daams, 1976: Cetina de Aragon, Zaragoza, Spain; MN2A, Early Miocene

PARAGLIRULUS ENGESSER. 1972

Original diagnosis, p. 208 (translated from German): "Small to medium-sized Gliridae-genus. Concave occlusal surface and relatively simple dental pattern. Main ridges are higher than the extra ridges. Lower molars: two-rooted, without continuous endolophid, with strong main ridges; M2 is generally wider than M1. Upper molars: three-rooted, subquadrate outline and continuous endoloph; anterior centroloph always connected to the endoloph; transverse ridges run parallel and at right angles to the endoloph, especially in M2. The lingual border has ornamentation."

Type species, type locality and type level – *Paraglirulus werenfelsi* Engesser, 1972; Anwil, Baselland, Switzerland; MN7/8, Middle Miocene

Other species included:

Paraglirulus agelakisi Van der Meulen & de Bruijn, 1982
Type locality and type level – Aliveri, Island of Evia, Greece; MN4A, Early Miocene

PERIDYROMYS STEHLIN & SCHAUB, 1951

Original diagnosis, p. 368 (translated from German): "M1 and M2 of which the anterior side of the trigone points obliquely backward. Lingual cusps and lingual ends of the posteroloph fused. In the trigone two small, accessory ridges (centrolophs) are present, of which the anterior one joins the paracone. Lower molars with well-developed mesoconid-entoconid ridge (=mesolophid). The
protoconid ridge (=metalophid) does not reach the metaconid. Paraconid, metaconid and mesolophid (=centrolophid) form a continuous ridge which curves twice at right angles."

Type species, type locality and type level – *Peridyromys murinus* (Pomel, 1853); Langy, France; MN2, Early Miocene

Synonymy: *Peridyromys occitanus* Baudelot & De Bonis, 1966; *Peridyromys murinus* occitanus in Flandrin et al., 1968; *Myomimus* sp. in de Bruijn & Rumke, 1974

Other species included:

Peridyromys aquatilis (de Bruijn & Moltzer, 1974)
Type locality and type level – Rubielos de Mora, Teruel, Spain; MN3, Early Miocene

Peridyromys columbarii Daams, 1989
Type locality and type level – Sayatón 6, Guadalajara, Spain; MP30, Late Oligocene

Synonyms: *Peridyromys murinus* in Brunet et al., 1981

Peridyromys jaegeri Aguilar, 1974
Type locality and type level – Les Cévennes, France; MN1, Early Miocene

Synonymy: *Peridyromys murinus* in Tobien, 1960

Peridyromys ordinasi Mein & Adrover, 1982
Type locality and type level – Santa Margarita, Mallorca, Spain; Middle Miocene

Peridyromys turbatus Alvarez et al., 1990
Type locality and type level – San Juan, Huesca. Spain; MN2B, Early Miocene

PRAEARMANTOMYS DE BRUIJN, 1966 a

Original diagnosis, p. 1: "Large Gliridac with simple dental pattern. The relatively thick ridges are as high as the basis of the crown. Occlusal surface of cheek teeth concave. Extra ridges absent. Antcroloph not connected to the protocone. M1 larger than M2."

Type specics. type locality and type level – *Praearmantomys crusafonti* de Bruijn, 1966a; Ateca 1, Zaragoza, Spain; MN3, Early Miocene

Synonymy: *Praearmantomys ginsburgi* Antunes & Mein, 1971

PRODRYOMYS MAYR. 1979

Original diagnosis, p. 246 (translated from German): "Small-sized Gliridae with moderately concave occlusal surface and relatively low ridges, resembling those of the recent genus *Dryomys*. M1² with labial ends of posterior centroloph and metaloph nearly at right angles. M2 with long distance between protoloph and metaloph in the middle of the tooth, as in the recent species *Dryomys nitidula* (Pallas). M2 distinctly larger than M1."

Type specics. type locality and type level – *Prodryomys satus* Mayr, 1979; Sandelzhausen, Bavaria, Germany; MN6, Middle Miocene

Other species included:

Prodryomys braillonii (Thaler, 1966)
Type locality and type level – Bouzigues, Hérault, France; MN2B, Early Miocene

Synonymy: *Pseudodryomys aguirrei* Adrover, 1978

Prodryomys gregarius (Dehm, 1950)
Type locality and type level – Wintershof-West, Bavaria, Germany; MN3, Early Miocene

PSEUDODRYOMYS DE BRUIJN. 1966 a

Original diagnosis, p. 7: "Gliridae of intermediate size. Occlusal surface of cheek teeth concave. Crowns of cheek teeth low. P4 small relative to M1 and rounded; M1 smaller than M2. The Spanish representatives of the genus *Pseudodryomys* are characterized by a gradual simplification through time."

Type species, type locality and type level – *Pseudodryomys ibericus* de Bruijn, 1966a; Ateca 1,
A classification of the Gliridae (Rodentia) on the basis of dental morphology

Zaragoza, Spain: MN3, Early Miocene
Synonymy: *Peridvronis cf. hamadryas* in Antunes & Mcin, 1971
Other species included:

Pseudodryonis aljaphi Hugueney et al., 1978
Type locality and type level – Montaigu-le-Blin, France; MN2A, Early Miocene

Pseudodryonis julii Daams, 1989 a
Type locality and type level – Artesilla, Zaragoza, Spain; MN4A, Early Miocene

Pseudodryonis granatensis Agustí, 1993 in Martin Suarez et al., 1993
Type locality and type level – Murchas, Granada, Spain; Latest Langhian – Early Serravalian

Pseudodryonis rex (Garcia Moreno 1986 in Alvarez Sierra & Garcia Moreno, 1986)
Type locality and type level – Torremormojón 6b, Palencia, Spain; MN7/8, Middle Miocene

Pseudodryonis robustus de Bruijn, 1967
Type locality and type level – Ateca 3, Zaragoza, Spain; MN3, Early Miocene

Pseudodryonis simplicidens de Bruijn, 1966 a
Type locality and type level – Valdemoros 3B, Zaragoza, Spain; MN4B, Early Miocene
Synonymy: *Pseudodryonis meini* Adrovcr, 1978

Ramys Garcia Moreno & Lopez Martinez, 1986

Original diagnosis, p. 341: "Gliridae with brachydont rectangular molars; somewhat irregular design of the ridges: centrolphs and extra ridges generally narrower than the main ridges; complex dental pattern, with frequently 3 or more extra ridges. The endoloph(id) may be present, and the labial ends of the ridges are curved anteriorly in the lower molars."
Type species, type locality and type level – *Ramys multicrestatus* (de Bruijn, 1966b); Pedregueras 2A, Zaragoza, Spain; MN9, Late Miocene
Other species included:

Ramys perezi Alvarez Sierra, 1986 in Alvarez Sierra & Garcia Moreno, 1986
Type locality and type level – Ampudia 9, Valladolid, Spain; MN9, Late Miocene

STERTOMYS DAAMS & FREUDENTHAL, 1985

Original diagnosis, p. 22: "Very large-sized Gliridae with a complicated dental pattern, low ridges and a slightly concave occlusal surface. The upper cheek teeth have flat, low and very wide ridges, and the anteroloph, protoloph and metaloph end freely at the lingual border."
Type species, type locality and type level – *Stertonis laticrestatus* Daams & Freudenthal, 1985 San Giovanni, Gargano, Italy: Late Miocene ?.

TEMPESTIA VAN DE WEERD, 1976

Original diagnosis, p. 139: "Medium-sized Gliridae the molars of which have relatively high and broad ridges. The centroloph is short, high and isolated. The anteroloph is connected with the protocone in M1,2."
(The author made a mistake by forgetting the word "not". It should have been: The anteroloph is not connected with the protocone in M1,2.)
Type species, type locality and type level – *Tempestia hartenbergeri* (de Bruijn, 1966b); Masia del Barbo, Teruel, Spain; MN 10, Late Miocene
Other species included:

Tempestia ovilis Daams. 1989 a
Type locality and type level – Las Planas 5B, Zaragoza, Spain; MN6. Middle Miocene
Synonymy: *Pseudodryonis cf. ibericus-simplicidens* from Manchones 1 in de Bruijn, 1967
TYRRHENOGLIS ENGESSER, 1976

Original diagnosis, p. 784 (translated from German): "Very large glirid genus (of similar size as the recent *Glis glis* or larger) with concave, very massive cheek teeth. The dental pattern is *Microdyromys*-like: the upper molars have a complete endoloph, to which the anteroloph is connected at the lingual border. Proto-, meta- and posteroloph are more or less parallel to each other and join the endoloph at right angles and at similar distances. The anterior centroloph is longer than the posterior one, but it does not reach the endoloph. In the lower cheek teeth there is a tendency to form a continuous endolophid. The crown of the upper molars is lingually higher than labially."

Type species, type locality and type level: *Tyrrhenoglis majori* Engesser, 1976; Capo Figari, Sardinia, Italy; Pliocene.

Other species included:

Tyrrhenoglis figariensis Zammit Maempel & de Bruijn, 1982
Type locality and type level – Capo Figari I; Plisicocene?

VASSEYROMYS BAUDELOT & DE BONIS, 1966

Synonymy: *Szechemyia* Kretzoi, 1978; *Ebromys* Cuenca, 1985

Original diagnosis, p. 342 (translated from French): "Medium-sized Gliridae. Cheek teeth with concave occlusal surface. Lower molars characterized by a centrolophid reaching the labial border and by a longitudinal prolongation of the labial cusps, that form a nearly continuous ectolophid."

Type species, type locality and type level – *Vasseurmys rugosus* Raudelot & De Bonis. 1966; Laugna, France; MN2B, Early Miocene

Other species included:

Vasseurmys autolensis (Cuenca, 1985)
Type locality and type level – Autol, La Rioja, Spain; MN1, Early Miocene

Vasseurmys bacchiensis (Martinez-Salanova, 1987)
Type locality and type level – Fuenmayor 2, La Rioja, Spain; MN2B, Early Miocene

Vasseurmys duplex Ünay, 1994
Type locality and type level – Haram I, Turkey; MN2, Early Miocene

Vasseurmys elegans Wu. 1993
Type locality and type level – Stubersheim 3, Germany; MN3. Early Miocene

Vasseurmys pannonicus (Kretzoi, 1978)
Type locality and type level – Budapest, Freshwater Limestone of the Széchenyi hill; MN10 ?, Late Miocene

Synonymy: *Vasseurmys thenii* Daxner-Hock & de Bruijn, 1981

Vasseurmys priscus De Bonis, 1973
Type locality and type level – Moissac 1, France; MN1, Early Miocene.