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Abstract

In the quarter century since the development of geometric morphometrics the community of prac-
titioners has largely been occupied with training issues and anatomy-based applications research in
the biological sciences. However, just as the scope of geometry transcends comparative anatomy,
the potential scope of morphometric analysis transcends investigations of the form and shape of or-
ganismal bodies. An important area of opportunity for morphometricians lies in the application of
geometric methods to non-traditional form/shape analysis problems. To illustrate the potential of
morphometric data analysis approaches to contribute to investigations outside its traditional base
in (physical) morphology we report here results of an investigation into the morphometrics of bat
echolocation calls. By treating Hanning windowed spectrograms of bat search echolocation calls
as complex 3D surfaces, and by using a variant of eigensurface analysis to sample and compare
these surfaces, it is possible to identify bat species to very high levels of accuracy (> 90% for raw
cross-validated training set identi cations, > 80% for jackknifed training set identi cations), even

for species (e.gMyotis) whose spectrograms have resisted separation into species-speci ¢ clusters
using traditional spectrogram descriptors. Moreover, the shape modeling capabilities of geometric
morphometrics render the complex mathematical subspaces within which these spectrogram shape
data reside along with the discriminant functions used to separate training-set clusters inter-
pretable in a simple, intuitive, and biologically informative manner. These results demonstrate the
rich source of species-speci ¢ information bioacoustic signal structures represent. They also illus-
trate the type of advances that can be made when morphometricians venture beyond the traditional
con nes of their eld to address wider questions of signi cance in the biological and the physical
sciences.

Introduction

atical manifolds uni ed by the fact that each point in the space cor-

It is commonplace to read that a revolution has taken place in morphd®Sponds to a possible con guration flandmark or semilandmark
metrics. When making such statements most authors refer to the dBoints, usually after the canonical nuisance factors of position, size

velopment of what has come to be called geometric morphometrics@nd rotation of have been eliminated from consideration. There are an

(GM), a term that usually goes unde ned even in review articles aboutn Nite number of such shape spaces. These geometric spaces make no
it (e.g., Adams et al. 2004). A systematic evaluation of the morphomet@SSumptions regarding the size of the landmark/semilandmark sets that

ric literature reveals the presence of at least two competing de nitiondall into their domain § can be any integer), the rules used to specify
of GM. The larger proportion of articles, either explicitly or implicitly, 'ocations of the landmarks/semilandmarks, the nature of the objects on

identify it with a speci ¢ set of data-analysis procedures (e.g., Pro-Which these landmarks/semilandmarks are located, or the range of pro-
crustes superposition, relative warps analysis, principal warps analysi§dures used to analyze such shape coordinate data.
that were formulated originally to operate on Cartesian coordinate data While this strong de nition of GM has the advantage of enfor-
directly, as multivariable data sets, without transforming them rst into Cing conceptual consistency, it is perhaps too restrictive if it is under-
scalar distances angles, areas, form factors, etc. as was commonly #€0d to apply only to the subset of GM methods that operate in the
case prior to the 1990s. In our view this is the weak de nition of Kendall shape spacgensu strictde.g., principal warps analysis, rel-
GM; inadequate insofar as the technique lists o ered are always exen@tive warps analysis). For example, the outline data analysis methods
plary rather than de nitive and de cient in that no attempt is made to of elliptical Fourier analysis (Kuhl and Giardina, 1982; Ferson et al.,
explain what unites these (and other) data analysis approaches togetd&85) and eigenshape analysis (Lohmann, 1983; MacLeod, 1999) are
either mathematically or conceptually. This de nition leads to confus-employed routinely by geometric morphometricians, but neither oper-
ing ambiguities and inconsistencies over what is, and what is not, a GM¥tes in the Kendall shape space (see Bookstein 1991). However, if the
method. concept of GM is extended to apply to all methods used to analyse data
The alternative strong de nition of GM understands this to include N Which point in the space corresponds to a possible con guration of
only those aspects of shape analysis that are undertaken in a Kendgifandmark points however determined, elliptical Fourier analysis, ei-
(or a mathematically similar) shape space (Kendall, 1984; Booksteir§enshape analysis, and a host of other data formulations can be used by
1991) or some lower dimensional derivative thereof. This is a set ofsM practitioners to test form and shape-based hypotheses rigorously.

hypothetical mathematical spaces actually the surfaces of mathem- The conceptual synthesis responsible for geometric morphometrics
can accommodate this ecumenical approach to shape space de nition

easily and, indeed, can reap substantial bene ts from its employment.
This synthesis took place some time ago now between 1984 and
1989 and involved three individuals primarily: Fred Bookstein, Colin
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Acoustic Signal Analysis

Goodall, and David Kendall (see Bookstein 1993). All three had in-F5
terests in geometry and statistics, but only Bookstein had direct and e
tensive experience with shape-based data-analysis problems in biolog
Subsequent to the late 1980s, a number of important conceptual adgs
tions to the corpus of GM have been made (e.g., Rohlf and Slice '»"&
Rohlf 1993; Mardia and Dryden 1998; Dryden and Mardia 1998), new
data analysis methods developed (e.g., the Dryden-Mardia shape tes
and methods developed in other contexts applied to morphometric dat
sets (e.g., machine learning methods, see MacLeod 2008). Neverth
less, from the late 1990s to the present day the main e orts of morpho
metricians have been spent in introducing individuals to the concept

of GM and applying these concepts to various problems in comparativ
morphology, or anatomical, analysis (see Adams et al. 2004). Pipistrellus pipistrelius Pipistrellus pygmasus

But, does this exhaust the range of contexts appropriate for morpho-  Figure 1 Bat species used as the primary subjects of this investigation.
metric intervention? After all, form, and shape are not only important
attributes of non-anatomical aspects of biology, they transcend the bio-
logical sciences entirely. For example, a host of variables important ) ) )
for managing forests in conservationally responsible and commercialifgrent types of calls being used for di erent purposes. When hunting,
optimal ways can be inferred from image texture analysis (e.g., Roi ats use di erent_ calls to locate, identify, track, and |r_1ter(_:ept di erent
and Seyer 1997; Franklin et al. 2001; Kayitakire et al. 2006). To datdYP€s Of prey. Di erent types of calls are also used in di erent loca-
GM-based morphometric methods have not been used to characterig@ns though, if possible, a bat will prefer to hunt in an area for which
or compare forest canopy textures though in principle this geometriédS call type is suited (see Schnitzler and Kalko 2001). For these func-
problem does not di er substantially from the characterization of bonetional reasons bat echolocation calls are known to be species speci ¢
or shell surface textures in biological species. Mechanistically, correc®S Well as diverse. This latter attribute raises the possibility of design-
geometric design of the surfaces of the receptor cells responsible f#f9 automated systems to identify bat species remotely by analysing
the senses of taste and smell is as important (if not more so) than ithe chgracterlstlcs of.thelr calls. If call-based .remote. identi cation can
ability of these receptors to respond to the presence of various cherR€ réalized on a su ciently large scale, and with su cient accuracy, it
ical species (Young, 2001; Cramer, 2004). The tools of GM could, invould be of _great importance to_bat cqnservatlon_ e orts as bats them-
principle, assist with the quanti cation and design of molecules thatSelves are di cult to catch, especially without causing physical harm to
match molecular receptor surfaces. And while sound often has quitetg'e individual. Bat calls are able to be recorded using microphones, but

complex structure, any digitized sound can be represented as a sha?iéCh recordings are only accurate at present if expensive audio sensors
and so be subjected, in principle, to GM analysis. are used. Thereisevenan app iBat foriPhone and Android operat-

ing systems that will allow smart phones to be used as bat call recording

To date GM has not been employed either extensively or routinely, .
. . . devices and to upload the recorded calls to a central repository at the
in any research eld outside that of comparative anatomy/morphologylnstitute of Zoology, London where software can assist in identifying

But this only means that the utility of GM approaches to the study of - . .
phenomena that represent the subject matter of these elds remai the call http://www.ibats.org.k If robust automated algorithms for

unexplored. In the past extra-anatomical applications have been hml(?entlfylng patspeues from the phyglcal attributes of thelrcall patterns
. can be realized, the e orts of a growing cadre of committed and enthu-
ited because the nature of the shapes these phenomena presentdier =~ - - : )
. - lastic citizen scientists could be enhanced to provide reliable census
markedly from the anatomical/morphological structures that are wel . . . )
- ) data in the cause of promoting bat biology/ecological research and bat
understood by morphometricians from the standpoint of shape char- .
o . - conservation e orts (Jones et al., 2013).
acterization. In particular, many of these non-traditional shapes aré . o o
Accordingly, the goals of this investigation are fourfold.

best characterized as continuous two-dimensional (2D) functions or 9 )
three-dimensional (3D) surfaces that do not appear to lend themselved) Description of a generalized, geometry-based strategy for analys-
to appropriate characterization using a small set of topologically ho- "9 bat search phase echolocation calls quantitatively that takes
mologous landmarks (see Aston et al. 2012). However, as the sem- advantage of GM concepts and tools. _ _ _
ilandmark once all but excluded from consideration as an adequatell) Comparison and contrast of results obtained using this new
morphometric descriptor (e.g., Bookstein 1990, 1991) has now been ~ Morphometric approach to acoustic signal analysis with more tra-
rehabilitated as a useful implement in the morphometrics toolkit, and _ ditional approaches. -

as semilandmark-based sampling protocols have been developed to ) Discussion of avenues and opportunities for future research that
cilitate the analysis of heretofore featureless surfaces (see Bookstein ~ Mightbe pursued in the context of a shape analysis-based approach
1997; MacLeod 1999, 2008, 2012; Adams et al. 2004; Gunz etal. 2005; 0 the analysis of bioacoustic signals.

Polly 2008; Polly and MacLeod 2008; Klingenberg 2008; Oxnard and V) Encouragement to (a) morphometricians to expand the scope of
O'Higgins 2008; Sievwright and MacLeod 2012), the conceptual gaps their work beyond thg rputlne anaIyS|s of physical morphology an.d
between extra-anatomical objects and the sorts of forms GM isused to  (P) non-morphometricians to realize and appreciate the potential

analyze, routinely seems less formidable now than they once did. of geometric approaches to contribute directly to testing what have
traditionally been regarded as non-morphology-based hypotheses

in their eld(s) of study.

Eptesicus serotinus

Myotis daubentonii

In order to explore the contribution GM can make to the analysis
of non-traditional form, this contribution will focus on the analysis
of sound; speci cally the geometric analysis of bat echolocation calls. .
Some bats, along with odonocetes (toothed whales & porpoises), sorMaterials and methods

birds (oilbirds, swiftlets), and some terrestrial mammals (shrews, tenkor the primary example dataset a sample of calls from ve bat species
recs, even humans to a limited extent see Supa et al. 1994; Thaler gtig. 1) was obtained from the EchoBank bat call archive, a bat call ref-
al. 2011 for a discussion) use acoustic echolocation to navigate througBrence library hosted by the Zoological Society of London. These spe-
and identify objects in, their environment, though this capability is bet-cies are all known to occur in the UK. Twenty calls were selected from
ter developed in bats than any other organismal group. each species at random in order to obtain a model of within-species
Bats typically emit calls in the frequency range from 14.0 kHz to overcall variation. In addition to this a second set of EchoBank calls was
100 kHz; well outside the sensitivity range of human audio receptiorcollected from bats belonging to the gerdgotis, which is regarded
(9Hz 212 kHz). Bat calls are known to have a signi cant association as a challenging group to identify to species level from echolocation
with habitat, sex, age and presence of con speci cs in terms of dif-call signatures alone (Kalko and Schnitzler, 1993; Parsons and Jones,
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Ui " Fourier Transform (FFT) to these amplitude vs. time data to represent
; | "-"-'-";-j or re-describe the complex waveform as a series of frequencies with as-
sociated frequency amplitudes. A sound le that has been re-expressed
as a Fourier series of frequencies is said to have been transformed into
00 ‘ o1 ‘ 02 03 ‘ 04 ‘ 0s the frequency domain. A plot of a sound's structure on a graph of
Duration (Sec) amplitude vs. frequency is often referred to as a power spectrum .
Figure 2 Raw (non-normalized) oscillogram for a typRigistrellus pipistrellusearch Fma_l”y’ a_3D representation of the Sou_“d can be obtained using a
call. This call has a duration of 0.36 sec. and a maximum volume of 0.62 pressure unigampling window that breaks the sound into chunks composed of an
equal number of data points; usually some power 22 2*, 28, 2°,
210), a convention that derives from the mathematics of the FFT. These
windows are moved down the signal by a speci ed amount, termed the

2000; Lundy et al., 2011). Ninklyotis species were used for this part © Set (usually another power of 2, but one that is less than the win-

Spectrograms are constructed from oscillograms by applying a Fast
U\U\U\UI|H|.|\UIU\L_|\|AU \U\UIWLI\U\\\{i\ul\.‘hwwJ
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of the analysisM. bechsteiniiM. blythii, M. brandtii, M. capaccinij ~ dow length), so that successive windows overlap by a constant amount.
M. daubentonii M. emarginatusM. myotis M. mystacinusand M. A FFT of the data included in each window is calculated and the asso-
nattereri Each of these species was represented by ten calls. ciated amplitudes recorded as a matrix of numbers with the rows of the

o ) ) matrix representing the number of windows or chunks and the columns
The calls themselves were full-spectrum, digital audio recordings ofg

; i resenting the number of frequency harmonics used to describe the
bat detection or search calls (as opposed to feeding buzzes or SOcﬁﬁmd included in each window. Of course, since the number of points

calls) recorded at a sampling frequency of 44.1 kHz. These calls Werg,q|uded in each window is the same, the number of frequency har-
obtained as primary digital audio recordings and saved to disk in thg,qnics extracted from each window will be the same. This procedure
Microsoft .wav le format. Although each recording contains multiple g referred to as a short-time or windowed Fourier analysis.

calls from a single individual, only one was selected for analysis in this One complication inherent to the windowed approach is it will rarely
investigation. Minimal processing was applied to each call to standpg yhe case that the rst and last point within each windowed dataset
ardize its structure. This processing procedure consisted of (1) N0 have the same amplitude value. If this is not the case the Fourier
malizing the amplitude of each call to standardize its volume and (zbecomposition procedure will arti cially assign a high amplitude to a

editing each call le to ensure it encpmpassed an eq.ui.valent total d.urhigh-frequency harmonic. The most commonly employed procedure to
ation. The latter st_ep was accomplished by determining the duratloEOrrect this problem is to multiply every point in the raw (windowed)
of the longest call in the sample and padding the ends of the shorte{,iaset 1y a continuous weighting function that, in e ect, forces the
calls with silence taking care to make certain that each call began af, 5 1, adopt the value 0.0 while not inducing distortion in the central
the rst position in the le listing. This step is necessary to ensure thatsection of the sound segment. A number of di erent weighting (or
each call can be compared across the sample in a reasonable manWﬁ'idow) functions have been developed for this purpose including the

and to verify that each call will be represented by the same number qI|anning, Hamming, Blackman, Bartlett, Turkey, and Laczos functions
geometric variables (see below). (see Harris 1978).

Currently there exist three approaches to the quantitative analysis of Typically, the set of variables resulting from a windowed Fourier
bioacoustic signal data generally and bat echolocation calls in partianalysis call duration, set of harmonic frequencies, and amplitude
ular (Russ, 2012). The primary method of data collection quanti esvalues associated with each frequency for each windowed chunk of
the sound wave as a series of pressure readings taken at equal timethe sound are assembled into a 3D image of sonic structure. These
tervals during the course of the call. A graph of these data that plotspectrograms have long been used to represent and compare both hu-
sound amplitude (= energy) against time is termed an oscillogram (Fignan and animal vocalization patterns. Spectrograms of this general
2). Oscillograms have been used to study many aspects of sound afadm have been referred to variously as spectral waterfalls, sonograms,
are familiar to many musicians and fans of digital music, as well as/oiceprints or voicegrams. An example of a Hanning windowed call
acoustic researchers, from the graphical displays of digital sound edifrequency spectrogram for a typical bat echolocation call is shown in

ing software. Fig. 3. The 3D structure of the call is usually represented as a colour-
Rhinolophus ferrumequinum Nyctalus noctula Myotis nattereri Pipistrellus pipistrellus
(Great Horeshoe Bat) (Noctule) (Natterer's Bat) (Common Pipistrelle)
150 100
E A 100 4 B . 1 C . ] D .
1001 | | | h
1001 ] |
5 r———-——\ | | i
T i | 1 i li k
E | 50 4 }-‘&‘-
S 50 50 1 \ |
3
g 50
s J
1 v
0 y 0 T T 0 T T 0 T
0 50 100 0 25 50 0 25 50 0 25 50
Duration (msec) Duration (msec) Duration (msec) Duration (msec)
Description FM-CF-FM FM-qCF FM-Broadband FM-CF Tail
Duration Long Moderate Short Moderate
Hunting Habitat Open, Uncluttered Open - Moderately Moderately Cuttered - Moderately Cluttered
Cluttered Cluttered

Figure 3 Representative bat spectrogram call forms with their standard qualitative descriptors (description, duration) and typical hunting habitat. Abbreviations: FM frequen

modulated, CF constant frequency, qCF quasi-constant frequency. Redrawn from Russ (2012).
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Figure 4 Hanning windowed spectrograms for tRmistrellus pipistrellusearch call shown in Fig. 1 after normalization and padding to extend it to boundary of the oscillogram
sampling window. The spectrogram is shown as a color coded 2D matrix (A) and an interpolated 3D surface (B). Note that the bright (yellow-white) band marking the fundam
harmonic sweep in (A) corresponds to the prominent ridge of amplitude values in the 3D surface representation (B) of the call's structure.

coded topological plot of call duration and harmonic frequency withdio signal best suited for echolocation duties in that same environment.
amplitude values represented as a greyscale or color region mappin@serefore, provided methods for representing the complex structure of
(e.g., see Schnitzler and Kalko 2001; Teeling 2009; Russ 2012; Fig. 3jhese calls can be developed, it should be the case that morphomet-

The traditional approach to using of spectrograms to achieve a quanrti-C approaches can be applied to Fhe characterizgtion, comparison, and
itative description of acoustic signal structure in a manner that |end§naly3|s_of these non-mqrphologlcal structures in the same way they
itself to qualitative analysis has been to employ a rather small num@'e applied to morphological structures.
ber of observations and/or simple descriptive terms that capture a very For this investigation all calls were placed within an interval of
limited subset of the spectrogram's overall geometry (see Russ 2012:1023 seconds, which yielded call les 4512 sample values in length.
and Fig. 3). Nonetheless, using these data, in addition to visual inThis is equivalent to representing each call as a 4512-dimensional
spection of the spectrogram patterns themselves, it has been possilgielumn vector. All calls were set to begin at time = 0.0 (sample =
to determine that, as a group, bat species have evolved di erently strud). Beyond normalization of the call amplitude and padding of the call
tured calls to take advantage of, or to compensate for, physical featuréiration, no lters were used to clean (e.g., sense or eliminate acous-
of their preferred hunting environments and preferred prey items. FoliC re ections from nearby surfaces) or enhance the sound. While on
example, bats that hunt in open spaces utilize long duration, constaggcasion re ections from certain surfaces can be helpful in bat identi-
frequency (Fig. 3A) or quasi-constant frequency (Fig. 3B) calls thatcations (e.g., bats that hunt over water, see Russ 2012), identi cation
achieve maximum range with low atmospheric attenuation (Schnitzusing acoustic signals generated by the bat itself is usually preferable.
ler and Kalko, 2001; Teeling, 2009; Russ, 2012). In contrast, bats that While it has been the case to date that sonic spectrogram data have
hunt in spatially complex, cluttered environments tend to utilize eithemeen characterized by and described on the basis of the 3D color-coded
short-duration, broadband, linear frequency modulated calls or shortontour maps such as those shown in Fig. 3, these data can just as easily
duration, broadband, linear period modulated calls to sense the strucand arguably more accurately from the standpoint of quantitative form
ture of their surroundings (Fig. 3C and 3D). Many bat species alsgharacterization/comparison be represented as true 3D elevation plots
rely on a variety of additional strategies for prey detection (e.g., audit{see Fig. 4). Accordingly, sonic spectrograms were calculated from
ory cues, Doppler shift, see Fenton et al. 1995; Jones 1999; Schnitzleach call oscillogram in order to represent its form as a 3D surface. A
and Kalko 2001). Finally, species that hunt in edge or mixed environspectrogram chunk size of 512 data points, with a chunk o set of 128
ments tend to utilize calls with both constant frequency and frequencyata points, was chosen to order to construct the window which also
modulation components with a relatively longer, narrow bandwidth,employed the Hanning function to minimize the amount of frequency
quasi-constant frequency character to achieve both localization sensjtakage that occurs as a result of the chunked signal segments being
ivity and high detection performance (Schnitzler and Kalko, 2001). non-continuous. These are standard spectrogram window settings.

Over and above this generalized relation of call sonic structure to This calculation resulted in a representation of each call as set of
the physical aspects of di erent hunting environments, representatio86 chunks each of which was 512 samples long with each chunk be-
of bat search echolocation calls by means of a spectrogram can suppartg described by 512 Fourier harmonic amplitude values. Note this
in a general sense, the testing of a variety of functional, ecological, anid a complete Fourier spectrum. To avoid redundancy due to aliasing
phylogenetic hypotheses. It does this in the same way that morphol@ll analyses were con ned to the unique portion of the Fourier spec-
gical features of anatomy support the same sorts of investigations, ifrogram (see Fig. 3). Once conversion to the windowed spectrogram
cluding phylogenetic analyses. For example, it is already known thafyad been accomplished for all calls amplitude values less than an ar-
in many bats, call type is consistently associated with di erences inbitrarily chosen cut-o value of -50 were reassigned that value in order
homologous anatomical characters (e.g., length, width, and shape @ provide a limit against which to distinguish between the call signal
the wing). This should not come as a surprise because, even througimd background noise. In terms of the shape of the call structure
the concept of biological homology cannot be applied to acoustic structhis background establishes the duration and frequency attributes of
turesper se there is an obvious functional relation between the physicakach call's form. This background normalization is a standard signal-
capabilities of particular (say) wing designs with regard to characterprocessing technique (see Russ 2012) and, in a sense, is the sonic equi-
istics of the environment in which ight takes place and the type of au-valent of placing a specimen on a black background prior to collecting a
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digital image of its form. Exploratory experiments showed that abovevariable, but consistent, featureless surface accurately and e ciently as
the -50 value results of the analysis changed markedly depending anset of topologically homologous semilandmarks that bear a consistent
which background normalization cut-o level was chosen, but belowgeometric relation to each other and to the underlying morphology
this level results were remarkably constant. in this case the windowed spectrogram. Gunz et al. (2005) utilized a
Redescription of the bat call oscillograms as Fourier-transformedimilar semilandmark-based phenetic procedure to analyze the shape of
sonic spectrograms increased the dimensionality of the call form fronthe cranial vault in humans though the grid sampling procedure used
4512 values to 8960 values, with this increase resulting from the fadn eigensurface analysis is both more structured and applicable to a
that each window chunk is described by 256 unique harmonic ampgreater diversity of forms. Speci cation of grid dimensions provides
litudes. This procedure resulted in a highly-detailed, but also highlyanalysts control over the delity of the call's spatial and so acous-
redundant, representation of the each call's physical structure. Such réic representation. Coarse sampling grids will capture only the gross
dundancy can be minimized, and the major features of the call structur@all form whereas ner grids will preserve greater levels of sonic detail.
preserved for analysis, by mathematically laying a call-sampling gridJsing this strategy there is even scope for automating the spectrogram-
over the windowed call and recording only the duration, frequency, angéampling process so that analysts can be sure all grids sample the spec-
amplitude values that occupy the nodes of the sampling grid. This regrogram to a consistent minimum quality criterion (see MacLeod 1999
resents a surface-shape sampling system analogous to that used ina#d MacLeod 2008 for a discussion in the context of eigenshape ana-
gensurface analysis (MacLeod, 2008; Sievwright and MacLeod, 2012ysis and eigensurface analysis respectively). Figure 5 shows results
for which object size (here represented by call duration) has been irfor a series of sub-samplings of tfpistrellus pipistrellusspectro-
cluded for an identical purpose: to represent the geometry of a highigram shown in Fig. 3 using square sampling grids of 10, 15, 25, and
35 cells per side. Note the rapid convergence on a reasonably detailed
estimate of raw spectrograph shape both in terms of call feature shape
and call feature location even at what would be considered coarse grid
resolutions. In this study either a 30-cell (mixed bat genera dataset) or
a 25-cell Myotis species) grid was used to represent the generalized
aspects of bat call structure. This level of detail was was judged (via
visual inspection) to contain all the key features of the original spectro-
gram (compare Fig. 5 with Fig. 4). Selection of this resolution means
that each spectrogram was described by 900 variables. Of course, this
is still a very high-dimensional dataset. But in fact these data repres-
ent only 20 percent of the original spectrogram data; a considerable
reduction in the dimensionality of the original dataset.

Sampled in this way the spectrogram data are, e ectively, shape data
that reside as point locations on a high-dimensionat (900) Kend-
all shape manifold. The 30-cell grids that were mathematically super-
imposed over the spectrogram surface are topologically homologous
across the dataset in the sense that each grid point bears a consistent
spatial relation to all other points on the grid. Indeed, the duration and
frequency coordinates of all grid nodes are identical across all spectro-
grams in the subsampled dataset; only the amplitude values vary. As
is standard practice in geometric morphometric investigations, these
amplitude data were re-expressed as deviations from the mean spec-
trogram shape for the pooled sample (Fig. 6). Re-expression of the
spectrogram data in this manner allows the acoustic structure of the
search call sounds to be represented in a rigorous and fully quanti able
manner as shapes. Once these grid-based samplings of the original
spectrogram data are in this form they can be operated on by all the
procedures of geometric morphometrics.

For this investigation a preliminary covariance-based principal com-
ponents analysis (PCA) was carried out on the pooled bat call spectro-
gram shape dataset in order to reduce the e ective dimensionality of the
dataset still further. This step is also important for assessing the major
directions of shape (= call) variability for the sample and for serving
as a basis space for call modeling procedures that will be used to inter-
pret the placement of call groups in a linear projection space derived
from the Kendall shape manifold. Results of the PCA analysis were
used to decide how many latent shape variable axes to retain for sub-
sequent discriminant analysis. The decision criterion for this phase of
the investigation was to retain call con guration scores on a su cient
number of eigenvectors to ensure that at least 95 percent of the ob-
served call-shape variability was retained for subsequent group-based
analyses.

To serve the needs to rhetorical brevity, these data analysis steps
including (1) calculation of the Hanning windows, (2) subsampling of
these windows based on grids of user-speci ed dimensions, and (3)
Figure 5 The e ect of choosing di erent subsampling grid resolutions on the charac- SUMmarization of major trends in acoustic structural variation via or-
ter of the estimc’;\]teg S;Jflllctrogrlam- Comrilare each dlfwn-sarﬁmiwrellﬁs PipistreNUSS dination of the positions of spectrogram surface shape coordinates in a
spectrogram with the full-resolutidpipistrellus pipistrelluspectrogram shown in Fig. 3. : -
For the purposes of the analyses of the primary bat call dataset a square grid resolutigﬁduce_d PCA SUbSPaC‘? will hencefor_th be referred to a_s elgensound
of 30 cells per side (900 cells in total) was chosen. analysis. This termis simply a convenience that streamlines procedural

and interpretive descriptions and discussions in much the same way that
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Figure 6 Mean search call spectrograms for the ve bat species included in the primar

call dataset along with the grand mean for the pooled sample.

groups present in that dataset, resulted in the speci cation of eight dis-
criminant functions. In order to obtain a robust estimate of group dis-
crimination e ciency and address issues arising from the high dimen-
sionality of the eigensound dataset both standard CVA and Monte Carlo
CVA (see Manly 1997) procedures were employed.

Geometric interpretation of the CVA space was facilitated through
the calculation of along-axis shape models using the back-projection
procedure presented originally in MacLeod (2009a) and used in a
number of recent articles (e.g., MacLeod 2008; Bolton et al. 2008;
Sievwright and MacLeod 2012). Statistical tests of the separation
between-group centroids in the CVA space relative to within-group dis-
persion of the data were carried out using the log-likelihood ratio (
method for which the probability | of obtaining observed di erences
between sample mean vectors can be determined via reference to the

2 distribution (see Manly 1994). Both e ciency and stability of the
discriminant functions calculated on the basis of call geometry were
also tested using both the raw training set data and a jackknifed CVA.

Finally, in order to compare and contrast results obtained using a geo-
metric approach to bat echolocation call analysis a set of standard call-
description variables was obtained by Collen (2012) using SonoBat
software from the EchoBank archive. Tab. 1 lists the variables in-
cluded in that reference dataset. These variables were used by Walters
etal. (2012) as the subset of possible descriptors that are most useful for
quantifying between-taxonomic group distinctions between call types.
To ensure strict comparability of results, these traditional spectrogram
descriptor data were subjected to the same data-analysis procedures as
the eigensound data.

Results

Inspection of mean spectrograms for the initial ve-species dataset
(Fig. 6) provides evidence for pronounced species-speci c di erences
in call form. Eptesicus serotinuaxhibited the most divergent call pat-

tern, along duration call with a narrow bandwidth focused into a prom-
inent low-frequency fundamental harmonic. This pattern is typical of a

¥1igh duty-cycling call, often employed by species hunting in open un-

cluttered environments. In contrast the tigotis species are charac-
terized by comparatively short, low duty-cycling calls with pronounced
low-frequency energy peaks that m&y.(daubentonii or may not (.

the terms Procrustes analysis, principle warps analysis and rela- bechsteinjj exhibit frequency modulated mean call shapdgyotis

tive warps analysis function in the standard GM literature. Eigen- species typically hunt in cluttered environments and/or over wider (

sound analysis was chosen to highlight the conceptual links betweedaubentonii. The twoPipistrellusspecies exhibit calls with their own

this geometry-based approach to acoustic signal surface analysis aggluctural di erences. Theipistrellus pipistrellusmean call exhib-

its morphological equivalents: eigenshape analysis (Lohmann, 198%s the short-to-intermediate duration and narrow bandwidth typical of

MacLeod, 1999) and eigensurface analysis (MacLeod, 2008; Polly angbecies that hunt in marginal, semi-cluttered environments whereas the

MacLeod, 2008; Sievwright and MacLeod, 2012).
Once the secondary data matrix of PC scores had been assembléeiiger bandwidth (especially at higher frequencies) and a marked dif-

these data were combined with a grouping variable that associated eafgience in peak-amplitude pro le. Both these species exhibit a promin-

set of PC scores with the species name of the caller, and the datent low-frequency fundamental harmonic, but the former is unique in

set submitted to a canonical variates analysis (CVA, see Campbell arits possession of a well-de ned, subsidiary, higher-frequency second-

Atchley 1981; MacLeod 2007). Since ve species were present in theary harmonic ridge.

primary sample test data, four discriminant functions were calculated The pooled sample mean shape (Fig. 6, lower right corner) repres-

and used in subsequent investigations. Whetisdataset was treated ents a complex amalgam of these singular patterns. This mean is an

in an identical manner which, owing to the larger number of speciegbstract mathematical concept that corresponds to the call pattern of

Variable Name

Pipistrellus pygmaeusean call exhibits a form of similar duration, but

Table 1 Traditional bat echolocation call descriptors.

Description

LowFreq
FregMaxPwr
HiFreq
Bndwdth
CallDuration
FreqCtr

Fc

FregKnee
FregLedge
StartSlope
SteepestSlope
HiFtoKnSlope

Minimum frequency of the call (kHz)

Frequency of the call at the point of maximum amplitude (kHz)

Maximum frequency of the call (kHz)

Bandwidth: total frequency spread of the call, calculated from the di erence between maximum and minimum frequencies of the call (kHz)

Duration of the call (ms)
Frequency at half the duration of the call (kHz)

Characteristic frequency: frequency of the instantaneous point in the nal 40% of the call with lowest slope (kHz)
Frequency at which the initial slope of the call most abruptly transitions to the slope of the body of the call (kHz)
Frequency of the most extended attest slope section of the call preceding the characteristic frequency (kHz)

Slope in the rst 5% of the call duration (kHz/ms)

Steepest slope of the call: the maximum of linear regressions of any segment of 10% of the duration of the call (kHz/ms)
Slope of the call calculated from the frequency and time of the point of highest frequency to the frequency and time of the knee (kHz/ms)
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ception of theE. serotinusbetween-groups variation is not well aligned
with the major axes of call form variation in the pooled dataset. Nev-
ertheless, the scatter of points in the subspace these three eigenvectors
indicates that these traditional variables do capture important aspects
of within-species similarity and between-species di erences.
Inspection of the eigenvector loadings for these axes indicates that
calls plotting low on PC 1 are characterized by relatively high min-
imum frequencies, a high frequency that represents the transition from
the initial phase and the body of the call, low maximum frequencies,
and low frequency slope gradients. Calls that plot high on PC 1 exhibit
the opposite characteristics and trends. Along PC 2 calls that project
to low positions are characterized by low amplitudes, low bandwidths,
high ledge frequencies and high frequency gradients whereas calls that
project to high positions along this axis are characterized by high call
amplitudes, high bandwidths, low ledge frequencies and low frequency
gradients. Calls that project to positions low on PC 3 possess high
Figure 7 A.-B. Distribution of bat species call geometries in the subspace formed by tH€dge frequencies, high frequency gradients, low maximum frequen-
rst three principal components of correlation matrix calculated from 12 traditional speceies, and low bandwidths whereas those that project to high positions
trograph descriptors. C.-D. D_istribution of bat species call geonjetries_ in the subspa%ﬁ.e characterized by low ledge frequencies, low frequency gradients,
formed by the rst three principle components of a 30-cell sampling grid-based repres- . . . . . .
entation of spectrograph shape coordinates. Note di erences in the axis scales whidWgh maximum frequencies, and high bandwidths. Note that, despite
have been adjusted to save space. See text for discussion. the apparent speci city of these spectrogram di erences, it is quite dif-
cult to form an intuitive impression of exactly what aspects of these
parameters are responsible for the broad range of species-speci c call

no known bat species, ancient or modern. Nevertheless, it plays ayqriation domains, characteristic di erences in species' call variation
important role in the analysis as it speci es the semilandmark poimpatterns, and the between-species distinctions in call form as expressed

con guration that locates the optimal set of linear planes tangent to thd? this ordination of call structure data. In essence, these traditional
Kendall shape manifold on which to project the actual call con gura_varlables are either too generalized or too idiosyncratic with respect to

tions in order to visualize the structure of shape relations among thert€ Structure of call variation to yield a detailed yet easy-to-visualize
result, and the loading patterns too complex to allow for simple and

Principal Component Analysis Traditional Spectrogram  Clear interpretations of the PCA space geometries.

Variables o .
To establish a baseline against which the performance of an eigensourlljdrlnC'paI Component Analysis ~ Spectrogram Shape Co-

approach to acoustic spectrogram characterization and analysis can %red'nates
evaluated, results obtained via application of this method were comAs noted above, a covariance-based PCA of the eigensound dataset was
pared to results obtained from a mathematically comparable analysfso used to assess the major directions of call variation as the nal
of a series of 12 traditional spectrogram variables typically used to asstep in an eigensound analysis. The primary purpose of this procedure
sess the structure of spectrogram similarities and di erences in cafvas to assess dominant patterns of call structure variation and further
echolocation studies across the a sample of the same ve species tHgduce the dimensionality of the spectrogram structure dataset by fo-
comprised the primary dataset (see Walters et al. 2012). These dagHsing the information content of grid-based sampling procedure into
represent observations of interest with respect to the characterizatighsmall number of composite, uncorrelated variables. Figures 7C-D
and comparison of spectrogram-based representations of acoustic d&t¥w the ordination of call geometries within the subspace formed by
(e.g., maximum recorded frequency, bandwidth). They are not gedhe rst three eigensound PC axes. Together these axes represent 75
metric in the sense of making any systematic attempt to represent ttigercent of the observed spectrogram surface shape variation.
form or shape of the call spectrogram in any but its most generalized as- This ordination of call geometries based on the 3D spectrogram sur-
pects. Nevertheless, itis these types of variables that are used at prestatgte shape shows unexpected structure with a suggestion of a classic
to quantitatively characterize all bat echolocation calls (see Russ 2012)orseshoe pattern in the plane formed by the rst two PC axes (Fig.
As a rst step in analyzing these traditional spectrogram data a PCA’C). The presence of this pattern in the PCA result indicates the ex-
was performed to make a preliminary assessment of the datasets' migtence of a non-linear gradient in these acoustic data. Since this is
jor axes of variation and, if appropriate, reduce its dimensionality bythe rst investigation (to our knowledge) that has operated on acous-
focusing the spectrogram shape information distributed across all rafic spectrogram data using sonic semilandmarks, it is unclear whether
variables into a smaller set of composite, or latent, variables. Becaussich gradients are common in these types of data or whether this is an
the units associated with the traditional spectrogram variables di efidiosyncratic feature of this particular dataset. If non-linear gradient-
from one another a correlation (rather than a covariance) matrix wakke trends are common in acoustic spectrogram shape data their ana-
used to assess the between-variable structure of these data. lysis my require methods speci cally formulated to handle such data
Figures 7A-B shows the subspace formed by projection of the rawe.g., non-linear PCA, kernel PCA, machine learning approaches; see
data values onto the rst three eigenvectors of the correlation matrixKramer 1991; Scholkopf et al. 1998; Friston et al. 2000; Scholz et al.
calculated from this traditional spectrogram descriptor variable set2007).
This subspace represents 96.3 percent of the observed variation de-With respect to linear data analysis, specialists are of two minds re-
scribed by the set of traditional variables. Although the point cloudsgarding the issues posed by the horseshoe pattern. Ecologists tend to
for all species exceff. serotinusare distributed over relatively large regard its presence as problematic and have developed a varidy of
regions, three of the ve species occupy unique domains within thishoctransformations to eliminate it from their datasets (e.g., de-trended
subspace. The twhlyotis species’ domains overlap strongly, a result correspondence analysis, see Pielou 1984; Hammer and Harper 2006).
that is consistent with previous reports of di culties separatiyotis Unfortunately, employment of these algorithms runs the risk of obscur-
species on the basis of their call patterns as assessed by traditional spaxy other aspects of the data pertinent to its interpretation. In this con-
trogram descriptors (Vaughan et al., 1997; Parsons and Jones, 20Q8xt it should be remembered that the horseshoe pattern is always an
Walters et al., 2012). Interestingly, wherdasserotinuscalls project  accurate portrayal of the nonlinear pattern of the data, albeit in a linear
to uniformly low positions along PC 1, the extremes of PC 2 and PC 3Fpace. Most mathematically inclined commentators advocate retention
are occupied by multiple groups. This result suggests that, with the e)of the horseshoe pattern in the data its removal is usually justi ed
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Figure 8 Hypothetical models of search call shape at a series of equally spaced coordinate positions (listed below each plot) along the rst three PC axes. These models provi
visual aid for developing interpretations of the PCA space shown in Fig. 7. See text for discussion.

primarily on aesthetic grounds while being mindful of its proper in- pothetical spectrogram point con gurations that illustrate the manner
terpretation or migrating to a non-linear data analysis procedure if th& which call structure changes along each of the rst three eigensound
situation warrants it (see Greenacre 1984; Reyment 1991; Reyment aades. This set of shape models can be used to understand the detailed
Joreskog 1993; Podani and Miklés 2002; MacLeod 2006). Since thgeometric nature of the ordination space shown in Fig. 7C-D and re ne
purpose of this analysis is to determine whether bat species can be idethe biological interpretation of the ordinated points therein.
ti ed by the geometry of their echolocation call patterns, and since the v nothetical spectrogram shape models for the rst eigensound axis
call con guration point distributions along the rst two pooled-sample (pc’1 of the pooled search call dataset) indicate call semilandmark con-
PC axes exhibit a high degree of species-speci c clustering, recours(Eurations that plot low on this axis represent, short duration, multi-
to de-trending algorithms or non-linear variants of PCA was deemedf,,4a| frequency modulated call shapes that exhibit two distinct, re-
unnecessary. latively high amplitude, but low frequency energy peaks and a low
Unlike the traditional spectrogram descriptor variable results (seamplitude, but broader high-frequency amplitude peak. This model
Fig. 7A-B), in the eigensound PCA space the extremes of shape varinatches the mean representationMf daubentoniiwell (compare
ation tend to be occupied by single species groups (Fig. 7C-D). For exwith Fig. 6). With movement in a positive direction along the eigen-
ample, PC 1 represents a contrast betwdedaubentoni{low scores)  sound axis 1 the call shape changes in three ways: call duration is in-
andE. serotinughigh scores); high scores along PC 2 tend to be domincreased, the low-frequency amplitude ridge of high call energy splits
ated byP. pipistrellusandM. bechsteiniiwith P. pygmaeudominating  into two (biharmonic) sharply de ned, low frequency ridges with high
the high end of PC 3. To be sure, some apparent overlap between sgfeequency components of the call becoming progressively less well-
cies groups does characterize this subspace and group-level outliers @& ned and more attenuated overall.

by no means uncommon. However, alignment between the major axes gecause of the in uence d. serotinuscall shapes on the dataset
of pooled sample shape variation and the primary 3D surface structurers 4 \whole, duration plays a strong role in the ordination of individuals
based distinctions in the species' call spectrograms is much greater f%rlong each of the rst three eigensound axes, though its e ect is most
the eigensound variables than it was for the traditional set of SpeCtrcbronounced along axis 1. In this sense then, a naive, qualitative inter-
gram descriptor variables; especially for the acoustically challenging, etation of the PC space based on species located at the extremes of
Myotisspecies. the various axes (see above) would be very misleading. These along-
Along PC 1 the two most divergent call geometries are thodd.of axis graphical models show quite clearly that, instead of call duration
daubentoniiandE. serotinus Since the former is the species with the per se axis 1 actually captures the contrast between low duty cycling,
longest mean call duration and the latter the species with the shortestequency modulated calls with a moderate and broadly de ned low-
this would suggest to many that PC 1 represents a call-duration axifrequency energy peak (low scores) and high duty cycling, narrowband,
Nonetheless, close inspection of the ordering of group centroids alonigiharmonic calls with sharply de ned low-frequency harmonics and at-
PC 1 is inconsistent with this simplistic interpretation. tenuation of the call structure at higher frequencies (high scores).

One of the advantages of choosing a geometric approach to acous-Extending this geometric interpretation to the second and third ei-
tic spectrogram analysis is that it is a relatively easy matter to calculatgensound dimensions, axis 2 captures the distinction between long-
the shapes of spectrograms for any point location on the Kendall shaphuration calls with low levels of frequency modulation and a pro-
manifold. This capability is in keeping with the fundamental theory nounced low frequency biharmonic structure (low scores) passing
that underlies all Kendall space shape analyses that each point in th@long the axis to calls typi ed by short durations, high levels of fre-
shape space corresponds to a unique con guration of landmark orguency modulation and a sharp, well-de ned, linear fundamental har-
in this case, semilandmark points. Figure 8 shows a set of ve hy-monic in which the maximum energy level is reached very early in
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the call sequence (high scores). Similarly, axis 3 captures the distinc- ) ) )
tion between long-duration calls with a well developed muIti-harmonic:girb['ﬁixze d%‘;r:f;';g’c? er;"at”ces for eigensound-based CVA results of call spectrogram form
structure that occupies (discretely) the entire frequency range (low

scores) to calls characterized by short-durations and a sharply de ned, Raw cross-validation identi cations of the training set specimens
= c

low frequency, fundamental harmonic structure in which the call's . = S @ ]
maximum energy is reached early, but extended over the entire initial 2 2 é ° & e
phase of the call. ‘g § E ‘g_ E B £
When call spectrogram geometries are projected into this subspace ) @ < ° a 3 g o
species-speci ¢ clouds of points are fairly well segregated. Outlying Epgg';;nus 2"'8 = = o 0 ;0 1000\00
call shapes exist for all these species; particularly so in the cases of \; echsteinii 20 20 10000
M. daubentoniiandE. serotinus However, the eigensound ordination M. daubentonii 20 20 100.00
space is not designed to gather groups together and should not be used. pipistrellus 20 20 100.00
to evaluate hypotheses of either group membership or group distinct-_P- Pygmaeus 20 20 100.00
iveness unless such hypotheses are bound up with assessments of maj /E’tlﬁlcorrect 02.80 02_80 0280 g.%o é.%o 18%0 100.00

directions of variation in the pooled dataset. As this is not the case in
the present study, these results were used primarily to further reduce the jackknifed cross-validation identi cations of the training set specimens

=

dimensionality of the spectrogram shape characterization problem by = S ) o

. . . . 2] T = = =]
focusing the information content of the 900 sampled amplitudes at the 2 7 S ) o B
sampling grid nodes into a small number of orthogonal variables. In- o § § ‘g g %
spection of the table of associated eigenvalues indicated that the rst _ 3 Q_ © S é g O
28 eigenvectors of the pooled-sample covariance matrix capture 95 Species u = = o o = >
percent of the spectrogram surface shape variation. Accordingly, the E-Serotinus - 20 20 100.00

. . . .~ M. bechsteinii 15 5 15 75.00
scores on these rst 28 eigensound axes, along with a grouping vari- \" 4aubentonii 4 16 16 80.00
able specifying the positions afpriori groups within the dataset, were P. pipistrellus 20 20 100.00
assembled and submitted to a CVA. Note this reduction from the 4512 P. pygmaeus 20 20 100.00
original values in the .wav data les represents a dimensionality savings Total 20 19 21 20 20 91 9100
% Incorrect 0.00 4.00 5.00 0.00 0.00 9.00

of 99.6 percent with less than 5 percent loss of geometric information
content for this sample. Of course, part of this dimensionality reduc-
tion is bound up with the value of (= number of specimens, in this
case 100) which, for most datasets of this type, will always be much lesgalls randomly from a single call distribution was rejected with a high
thanm (= number of variables, in this case 900). But even if the size ofdegree of con dence (= 0.00%). Even more importantly, results of
the dataset rather than the number of variables is used as the stand&rifickknife test opost-hoddenti cation e ciency (Tab. 2) indicated
of comparison, a 72 percent reduction in dimensionally with less thahat these discriminant functions are relatively stable and might be ex-
a 5 percent loss of geometric information content remains impressivePected to return up to 90 percent accurate results for sets of unknowns
drawn from statistically similar populations. As with the analysis of
Canonical Variates Analysis  Traditional Spectrogram post-hoc training set discrimination, results of the jackknife test identi-
es the two Myotis species as being similar to one another in terms of

Variables - :
call structure when assessed by the traditional spectrogram descriptor

Although four discriminant axes with positive eigenvalues were SPeyataset.
ci ed as a result of the traditional variables CVA analysis, the character . . .
In terms of gaining insight into the aspects of the traditional call

of group-optimized separations can be appreciated from an inspection . 4 o
of CV axes 1-3 (Fig. 9). For this variable getserotinusP. pipistrel- variable sets responsible for the observed between-groups distinctions,

lus, andP. pygmaeusill formed tight, well-separated domains within because these_CVA result_s are based on PCA scores, interpret_ation of
the CV space. However, the tWyotisspecies exhibited a much wider thg CVA space involves using the CVA eigenvector loading coe uepts
range of variation along with a substantial overlap in their call form dis-to Interpret c_iegree of allgnmen_t between the C.VA axes ar_1d partl_cular
tributions. Again, this result is consistent with the experience of othe he PCA variables, and then using the PCA variables loadings to inter-

analysts who have employed a traditional spectrogram descriptor varﬁqnat degree of alignment between the CVA axes and particular sets of

ables, even when these variable sets are analysed by non-linear proc 5|_g|nal variables. For variables expressed in di ering units and that

ures (e.g., Parsons and Jones 2000; Redgewell et al. 2009: Walters igve little conceptual relation to one another, this is a daunting inter-
al 201é)" ' ' ' pretive task; rarely attempted by even the most experienced CV data

- . . ,analysts. This task could simpli ed to some extent by using the ori-
Based on results of the log-likelihood ratio test for group centroid inal data as input directly into the CVA routine. However. doind this
separation relative to group dispersion£ 638.00, df = 24), the null g P y ) ' g

. . . -would forego the opportunity to achieve preliminary dimensionality re-
hypothesis that these call geometries can been explained by OlraV\"no%ction which could be important for dataset that employ large num-
bers of descriptive variables. Indeed, for this dataset a direct CVA was
not possible as the magnitudes of the variable values included in the
traditional descriptor dataset di ered by ten orders of magnitude, thus
preventing the original matrix from being inverted.

Canonical Variates Analysis Spectrogram Shape Coordin-
ates

While ordination of the search echolocation calls within the the sub-
space formed by the rst three CV axes of the eigensound form data

(Fig. 10A) may appear similar to that of the traditional variables super-

cially, there are important di erences. In Fig. 9 most between-groups
] o ) o separation occurred in the plane de ned by CV 1 and CV 2. In the case
e 8 Disbuton of oo species cal geomelries I e subspace lomed Y %) the geometric CVA analysis each of the st three canonical variates
spectrograph descriptors. Note di erences in the axis scales. See text for discussion. contribute to group separation. This is a much more balanced discrim-
inant result than was found using the traditional data. In principle this

118



Acoustic Signal Analysis

Figure 10 Distribution of bat species call geometries in the subspace formed by the rst three canonical variates of a 24 dimensional PC-based representation of spectrograph sh
coordinates. A. Grouping variable set to re ect true species di erences. B. Grouping variable set randomly in order to determine the degree with which the result presented in A cc
be consistent with the null hypothesis of no between-groups spectrogram shape di erences. Note di erences in the axis scales. See text for discussion.

should allow for a great degree of certainty in, and stability of, both ve M. bechnsteinitalls mistaken foM. daubentonicalls and fouM.
group characterization and unknown call identi cation. daubentoniicalls were mistaken fok. bechnsteinii While the jack-

As before E. serotinusP. pipistrellus andP. pygmaeusalls form knifed cross-validation result is not perfect, it is well within the accur-
tight, well-separated domains within the eigensound CV space (FigCy expectations of identi cations based on other morphological data
10A). However using the eigensound variables the yotisspecies ~ and far better than has been achieved by any similar analysis of bat
also separated cleanly into discrete and tightly clustered groups. ThRcholocation call data previously. Further, these results suggest that, in
result is unprecedented in thsllyotis species calls have proven to be addition to greater power of group characterization a orded by the ei-
resistant to separation based on traditional spectrogram descriptor vagiensound approach to acoustic signal analysis, it may well be possible
ables even when analysed by themselves. To achieve such clear seg@rconduct robust tests of systematic hypothesis with smaller sample
ations between th®lyotis species’ call structures when other species Sizes using geometric data than would be possible using a traditional
are present in the dataset suggests that a heretofore unexpected leve$@t of spectrogram descriptors.
call distinctiveness exists betwebtyotis species. This interpretation Perhaps best of all, use of geometric approaches to characterize spec-
is also consistent with the overall level of distinctiveness that appears twogram form allow for precise interpretations to be made of the geo-
characterize the mean shape representatio. tlechsteiniiand M. metric character of the discriminant space because it is an easy matter
daubentoniin Fig. 6. to project vectors the CVA space, the PCA space, and on into the space

A log-likelihood ratio test for group centroid dispersion relative to of the original variables (see MacLeod 2007, for a discussion of the pro-
within-groups variation rejects the the null hypothesis of no group-levejection equations). Figure 11 displays the results of using this method
structure to a high level of signi cance (= 1051.00, df = 232, = to illustrate the pattern of spectrogram shape variation along each of
0.00%), as does a 10000 pseudoreplicate Monte Carlo CVA designdbie rst three geometric dataset CV axes.
to relax the distributional assumptions inherent in this parametric stat- Shape variation along CV axis 1 is strongly reminiscent of the pat-
istical test ( =1045.42, df = 112, critical value = 134.55= 0.00%).  terns of shape variation captured by the rst pooled groups eigensound

Despite the graphic result shown in Fig. 10A, some might questioraxis (see Fig. 8). The polarity of these two axes is reversed, but eigen-
whether this grouping pattern can be used to refute the null hypothesigctor polarity is arbitrary, a by-product of the procedure used to estim-
of no deterministic shape di erence structure between groups owingite the eigenvectors. Other than this the pattern of shape change along
to the relatively high dimensionality and relative modest number of in-these axes is almost identical, but with one important di erence. Spec-
dividuals included in the dataset (see Bellman 1957; MacLeod 2007rogram surface shapes that project to positions high on CV axis 1 are
Kovarovic et al. 2011). This issue can be resolved in two ways. First icharacterized by long call durations and high duty cycling at low fre-
is possible to repeat the analysis on the same set of data after the trggencies, but a sharply de ned, broadband, multi-harmonic character.
group-level structure has been destroyed via randomized group merfsiven this characteristic spectrogram form it is readily understandable
bership assignments. The scatterplot obtained for this randomizeavhy theE. serotinugroup projects to a position high on this axis. How-
groups test is show in Fig. 10B. Note than randomising group memever, the opposite end of CV axis 1 in characterized by short duration,
bership resulted in complete destruction of group-speci ¢ spectrograniow duty cycling, frequency modulated calls accompanied by a single,
shape di erences irrespective of the relatively high dimensionality oflow frequency, fundamental harmonic whose energy peak is realized
the dataset. These randomized data fail to pass a log-likelihood ratiguickly after call initiation. This is not the characteristic call formbf
test for the separation between group centroids (106.10, df = 112,  daubentonii which occupied the opposite end of the rst eigensound

=63.96%) and exhibit a post-hoc e ciency of assigning members of axis, but rather oM. bechsteinii Along this CV axis the broadband
the training set to their correct (randomized) groups as little better thanall typical of M. daubentoniioccupies a position much closer to that
would be expected due to chance alone (e.g., 50%, if there were jusf E. serotinughan to its congené¥l. bechsteinii
two groups). Variation along CV axes 2 and 3 presents additional and even more

The second test is to use a jackknife sampling strategy to examingubtle contrasts between spectrogram surface shapes, few of which
the stability of the discriminant functions (Manly 1997, see Tab. 2).could be understood in any detail without the graphical assistance
This test results in only nine individuals being misclassi ed post-hoc:provided by the eigensound spectrogram shape models. Along both
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Figure 11 Hypothetical models of search call shape at a series of equally spaced coordinate positions (listed below each plot) along the rst three CV axes. These models provi
visual aid for developing interpretations of the CVA space shown in Fig. 11. See text for discussion.

of these axes there is a contrast between long-duration, high dutghape variation. Scores of each shape con guration across all 29 vari-
cycling, low frequency, biharmonic calls (low scores) with (CV axis ables were submitted to a CVA to create a linear space that maxim-
3) or without (CV axis 2) subsidiary higher frequency energy compon-zed between-groups separation relative to within-groups dispersion.
ents and short calls with primary harmonics in the low-frequency band 3D plot of the subspace formed by the rst three CV axes is shown
exhibit and energy peak in the very earliest call stage (CV axis 2) oin Fig. 13A as a way of illustrating the general character of between-
throughout the early portion of the call (CV axis 1). Aside from thesegroups separation that resulted from this analysis and that is resident
patterns there is a clear distinction between CV axis 2 and CV axis ®vith the spectrogram data for this sonically di cult-to-characterize

in terms of the degree of frequency modulation they represent. Thimulti-species group.

ranges from weak frequency modulation with strong attenuation (CV  Within the low-dimensional subspace shown in Fig. 13A four spe-
axis 2) to strong frequency modulation, but weak attenuation (CV axigies M. myotis M. blythii, M. nattereri andM. emarginatusall form

3). In the cases of both these axes the middle ground of the ordinatight, isolated clusters of call spectrogram geometries, well-separated
tion spaces is characterised by relatively long duration, multi-harmonic

calls with low frequency modulation overall. Given the patterns illus-

trated by these CV space models, not only can the ordination of group

placement relative to each other be understood quickly and easily, reli-

able predictions can be made about call forms in (presently) unoccupied

regions of the discriminant space.

Myotis Analyses

As a second demonstration of the exibility and power of adopting a
geometric approach to acoustic signal analysis we consider the case
of EuropeanMyotis, a group of bats regarded as being very di cult

to identify on the basis of call structure alone (Walters et al., 2012).
These calls were collected at a sampling rate of 312500 Hz and a total
(padded) duration of 0.01 seconds, parameters that yielded a sample
of 3094 digitized values per call. All calls were amplitude standard-
ized and transformed into a spectrogram using a 512 Hanning window
with an o set of 128. For eigensound analysis these calls were down-
sampled using a 25 cell grid, which reduced the e ective dimension-
ality from 12800 spectrogram values to 625, or 5 percent of the total
spectrogram information. Mean 3D spectrograms for each species are
shown in Fig 12.

These down-sampled spectrogram data were processed according
to the eigensound protocol (as outlined above) which focuses spectro- ) 5 . " hat have been o )
: : . . -Figure 12 Mean 3D spectrogram surface shapes that have been down-sampled to a 25
gram Shape information 'nto_ a small numb_er of composn_e geometrlgird resolution for the nindlyotisspecies using in this investigation. These plots illustrate
shape variables. For thdyotis dataset 29 eigensound variables/axesrepresentative between-species call structure di erences.

were needed to represent 95 percent of the observed 3D spectrogram
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o . . S based s of call . Myotis myotiscalls exhibit the greatest level of geometric distinc-
Table 3 Confusion matrices for eigensound-based CVA results of call spectrogram for i f : ; :
for Myotisspecies. ﬂbn WI'FhIn the.CV 1to CV 3 subspace. This resultis .con.S|stent ywth a
visual inspection of the average spectrogram forms in Fig.Mytis
Raw cross-validation identi cations of the training set specimens myotisobviously has the call of greatest mean duration relative to other
= 2]

= = 5 2 3 species in the dataset. The very tight clusterinlylomyotiscall shape
% - 58 & 5 o g o I3 ordination evident in Fig. 13A indicates that this is a consistent feature
s £ 5 % 5 &8 g £ g of the species. Similarly, the mean calls\f blythii, M. nattereriand
€ 8 8 6 © © E E £ J O M. emarginatusare all more similar to each other than any are to the
Species = 3 = 3 = 3 = 2 3 P _ ¥ meanM. myotiscall, but nevertheless retain plainly distinctive features
m- gﬁ/‘;ﬂﬁte'”” 8 10 1 1 ig 138'88 of their own in terms of their spectrogram surface geometries. For ex-
M. brandtii 9 1 10 9000 ampleM. emarginatuss characterized by a much narrower and more
M. capaccinii 1 9 10 90.00 well-de ned fundamental harmonic than is evident in tke blythii
M. daubentonii 10 10 100.00  call whereas the positioning and duration-frequency orientations of the
M. emarginatus 10 10 100.00 M, emarginatusandM. nattererifundamental harmonics all di er dis-
m mgg:";cinus 1 10 9 18 188_‘88 tinctively. Again, the tight clustering of these species groups in the
M. nattereri 10 10 100.00 discriminant spectrogram shape space suggests that these and other
Total 8 10 11 9 12 10 10 10 10 90 94.44 Qeometric feature(s) are consistent and distinctive call characteristics
% Incorrect ~ 0.00 0.00 2.22 0.00 2.22 0.00 0.00 1.11 0.00 5.56 of these species. A log-likelihood ratio test of thgotis discriminant
_ o o ) space for signi cant group-centroid dispersion£ 1051.00, df = 232,
Jackinifed cross-validation ident Ca:tfns ‘?ghe ga'”'”g Segpec'mens =0.00%) resulted in rejection of the null hypothesis of no group-level
-993 = £ g g s 5 _ structure as does a 10000 pseudoreplicate Monte Carlo CVA designed
2z 28 £ 92 2 g 3 o to relax the distributional assumptions inherent in parametric statist-
§ % _‘g § § E 2 g @ = ‘8 ical tests for group centroid separation relative to group dispersion (
Species s s s s s s s S s E ° =1051.02, df = 232, critical value = 236.60= 0.00%).
M. bechsteini 7 1 1 1 10 70.00 As was the case with the more diverse sample (see above), the pos-
M. blythii 2 7 1 10 70.00 sibility exists that the relative high dimensionality of the dataset and
M.brandti 1 8 1 1 70.00  Jow number of specimens may conspire to enable any combination of
m- g‘;"n‘l;’r’;i”;gtndg 1 1 9 ° }8 38'88 groups to appear signi cantly separated (see above). To address this
M. myotis 10 10 100.00  issue aMyotisgroup-randomized dataset was created and subjected to
M. mystacinus 1 1 1 7 10 70.00 CVA. A plot of the rst three CV axes for these data is shown in Fig.
M. nattereri 10 10 100.00  13B. As with the mixed-genus randomized group result, amalgama-
Total 26 29 35 26 39 30 30 30 30 90 82.22 tjon of spectrograms from di erent species into the same group e ect-
% Incorrect  3.33 2.22 3.33 1.11 4.44 1.11 0.00 3.33 0.00 17.78 ively destroys the group-level structure within the discriminant space.

This lack of discriminatory power is also re ected in the results of the
log-likelihood test for these randomized data € 197.20, df = 232,
= 95.28%) and in the confusion matrix that summarizes post-hoc

from each other and from a central cluster containing the remainingliscrimination performance (44 incorrect spectrogram assignments or
species. But even within the central cluster there is evidence of strong8.9% of the total).
within-groups clustering and between-groups separation based on call On the basis of these results there is little question that the species-
structure. Again, there is no expectation that separations between adlvel call shape separations seen in Fig. 13A are consistent with the
groups will be represented accurately within in this low-dimensionalrecognition of heretofore unanticipated, but nonetheless profound and
subspace. However, to see so many overt clusters in such a lowtatistically signi cant, levels of distinction betwedwyotis species'
dimensional subspace is very encouraging in terms of the ability oécholocation call structures. The e ciency of thdyotisdiscriminant
a geometric approach to the analysis of call form to succeed in repre$danctions in assigning these 90 calls to the correct grqgs$-hocis
enting species-speci ¢ call distinctions in this widely acknowledgedimpressive (Tab. 3; 94.4% correct identi cations). Cross-validation
di cult species group. of these results using the more rigorous jackknife strategy provides a

Figure 13 Distribution of Myotis species call geometries in the subspace formed by the rst three canonical variates of a PCA-based summarization of their spectrograph shay
coordinate data. A. Grouping variable set to re ect true species di erences. B. Grouping variable set randomly in order to determine the degree with which the resul&presented i
could be consistent with the null hypothesis of no between-groups spectrogram shape di erences. Note di erences in the axis scales. See text for discussion.
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more robust assessment of how the discriminant functions determinegd quite possible that distortions in the representation of these outlines
from this dataset might perform in a generalized context (Tab. 3, 82.2%vere introduced by the EFA algorithm at both of the sharp ends of the
correct identi cations). But even given the circa ten percent decreas@undamental harmonic's termini. Based on their Fig. 2-11l the repres-
in identi cation performance under the more rigorous test, the resulentations of these sweep patterns also seem to be of quite low resolu-
remains favourable especially given the small sample sizes involvetion, with highly aliased boundaries and (so) distorted forms. Lundy et
in this study and when compared to previous attempts to characterizd. (2011) provided no information regarding the resolution of the sem-

these species through echolocation call data alone (see below). ilandmark data used to quantify these outlines and/or what, if any, steps
were taken to ensure both sides of the harmonic's trace were represen-
Discussion ted by an equivalent number of landmarks that occupy equivalent po-

sitions in the semilandmark sampling sequence across the sample (see
morphometric anoroaches to play a siani cant role in a host of non MacLeod 1999 for a discussion of the problems that result for poor re-
morzhological (i[rjlpa strict sens?a 3; thatgterm) contexts. They becomgistration of outlines across a sample along with a simple strategy for
: orrecting the problem). In addition, the Lundy et al. approach ap-

even more so when it is recalled that these resuits were ggnerated Yoach appears not to focus on locating the position of the fundamental
(1) quite small datasets and (2) quite a low level of 3D spatial resolu;

tion. Yet both mixed species amdyotisresults have revealed a wealth harn_wonlc Wlthlr_] the C(?n.text of the entire call structure.

of useful structure; structure that, up to now, had not been recognized, Given these issues it is remarkable that the Lundy et al. (2011) EFA
much less exploited successfully, to understand the systematics and bieProach delivered even marginally adequate results. An overall iden-
logy of bat echolocation calls. Access to additional phenomenologicali cation accuracy of 79.6 percent was achieved using stepwise (but ap-
levels in acoustic spectrogram data can be gained easily by increasirpﬁre““y a non-cross-validated) discriminant analysis of the EFA-based
or decreasing the spatial resolution of the eigensound sampling gri¢haracterization of 2D sweep geometry alone. This accuracy estimate
There is also scope for windowing of the sample grid itself in orderVas later boos_,te_d to 96.3 percent via inclusion of the_tradltlonal spec-
to conduct analyses on mathematically isolated spatial components §Pgram descriptive parameter maximum frequency in the data prior
spectrogram variation. Moreover, this generalized conceptualizatiorf© Stepwise dlscrlmlnan't analysis. Neverthgless, this appr_oach to bat
sampling, and geometric data-analysis strategy can be applied to afigholocation call analysis cannot be generalized even Myattisspe-
representation of any sort of acoustic data no matter how abstract or ¢fl€S much less all bat species insofar as multi-harmonic species
vorced from the anatomical roots of contemporary morphometric ana@nnot be represent by a single harmonic sweep outline. The eigen-
lysis. sound approach to acoustic signal shape analysis circumvents all these

In a previous investigation Lundy et al. (2011) claimed that theirissues, simply, elegantly, and e ectively as well as delivering superior

application of elliptical Fourier analysis (EFA) to aspects of the spec'€Sults:

trogram ofM. daubentoniiM. mystacinusandM. natterericalls rep- In eigensound analysis, standardization of the spatial representation
resented the rst attempt to classify echolocation calls using morpho-of the entire call sound structure is achieved by adopting the conven-
metrics (p. 103). As the generic term morphometrics applies to any tion that each sound le starts at call initiation, each ends at the end
and all attempts to quantify form and form change (see Blackith an@f the normal signal duration (so no part of the sound is stretched or
Reyment 1971; Pimentel 1979), this claim is obviously false as it failscompressed arti cially), and by ensuring that sound les are of equi-
to acknowledge all prior attempts to quantify any aspect of bat soungtalent duration by adding silence to the ends of the shorter-duration
including the prior investigations cited by these authors in their owncalls. The former is comparable in the anatomical morphometric realm
text. If this statement is taken to refer to GM, it is also questionable agio beginning outline digitization at a single landmark point that cor-
under some previous de nitions of that term, EFA would be excludedresponds to all other call initiation landmarks across the sample. The
because it does not operate in the Kendall shape space (see Bookstkitier is e ectively analogous to ensuring all calls are set to the same
1990, 1991, p. 48). However, the more important issue is to con- size' in the sense of being represented by the same number of Four-
sider carefully which approach to the analysis of any given set of datéer harmonic amplitude variables. In this sense acoustic homology is
is more appropriate for answering (in this case the biological ) ques-maintained across the entire dataset in terms of the physical energy-
tions raised successfully, adequately, and reliably. duration form of the call. Re-expression of the sound's information
The Lundy et al. (2011) investigation used EFA to characterize the€ontent using a set of Fourier coe cients spatially organized into a
form of the fundamental harmonic in thdyotis call spectrogram's  Hanning window corresponds to the re-expression of a boundary out-
frequency-duration plane. Myotis species this harmonic forms only line curve using any radial or elliptical Fourier spectra, or indeed the
part of some species' characteristic call pattern (see Fig. 12). Indeethe re-expression of a landmark-based shape con guration by means
it could be argued this harmonic sweep is so ill-de ned as to be abserfaf principle/partial warps. Use of a grid-based representation of the
entirely in someMyotis species (e.gM. blythii). Absent also is any sound structure also ensures equivalent spatial dimensionality across
criterion discussed by Lundy et al. (2011) by which the sweep's lowerll sounds included in the sample and represents the conceptually equi-
boundary the boundary that controls the shape of the fundamentatalent of a Procrustes alignment (without the need to actually perform
harmonic's outline was determined objectively. As such, the outlinethe Procrustes calculations). Finally, subsampling this spectrograph
of the fundamental harmonic in the spectrogram'’s frequency-duratiogrid to reduce the e ective dimensionality of the data, along with use
plane seems a decidedly limited and problematic feature diifis  of the baseline adjustment convention, represents the sonic equivalent
call to focus on for the purpose of sound characterization. of standard digital image processing procedures designed to boost the
For those species in which the fundamental harmonic is present, i ective signal-to-noise ratios of the spectrograms.
form is that of a long, narrow arc in the 3D spectrogram space. Asisil- To appreciate the similarities and the dierences between this
lustrated in Kuhl and Giardina (1982), EFA does not perform well whenmethod of spectrogram processing the data processing steps considered
trying to characterize such structures. Since only 20 Fourier harmoniggutine in GM it is important to note that each of the steps outline
were used by Lundy et al. (2011) to describe the shape this structuredbove is performed on individual sound les without reference to any
information contributed by the sample itself. In other words, no part
of these operations is optimized via reference to any other sound or
1Adams etal. (2004) claimed that Outline methods were the rst geometric morphomet-sound spectrogram in the sample. While it is tempting to use the
e metiode o e b (. . it e Gl venysimpitcal s Ik more 1 serm homology (ints mathematical sense of spatal correspondence)
the morphological structure (also p. 6). By this rather general (and generous) de ni-t0 describe the equivalence between grid cells in the down-sampled

tion, virtually any data collected from an organismal body including linear distances Hanning grid, in order to avoid confusion the reader may want to re-
between landmarks (see Strauss and Bookstein 1982), and any numerical data-analysis d th iti I ivalents si | indowi d
procedure could be regarded as being consistent with the principles of GM (see aldgar ese posiuonal equivalents simply as windowing correspond-

arguments presented in the Introduction). ences. Similar sampling strategies are also key parts of eigensurface
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analysis (MacLeod, 2008; Sievwright and MacLeod, 2012) and certaino have component of phylogenetic covariance embedded within their
approaches to machine learning (MacLeod et al., 2007a,b; MacLeodtructure. Felsenstein (1985, 1988, 2002); Harvey and Pagel (1991);
2012). Even after using such severe down-sampling schemes &farvey et al. (1996); Martins and Hansen (1997); MacLeod (2001);
those employed in this investigation, all of the traditional spectrogranRohlf (2001, 2002, 2006) and a host of others have all made the case that
descriptor variable concepts are represented in one form or another the analysis of morphological, behavioral, ecological, and geograph-
the gridded eigensound dataset and so are part of the the overall écal data must take phylogenetic covariance into consideration when
gensound analysis. In addition to this, a wealth of other geometric indesigning quantitative tests of biological hypotheses or run the risk of
formation not captured by either traditional sets of spectrogram scalantroducing substantial error in the results produced. Lack of a reliable
descriptors or the Lundy et al. (2011) EFA approach are also present sind su ciently detail approach to the quanti cation of acoustic data
the eigensound data. has, to date, kept bioacoustic signal analysis from taking advantage of

The results achieved through employment of the eigensoun&nproved statistical testing and data-analysis strategies that are robust
sampling and data characterization strategy speak for themselves fé-the e ects of phylogenetic structure (e.g., Revell 2009). The eigen-
garding this technique's e ectiveness. Any acoustic signal pattern, ngound approach to acoustic signal analysis provides a means by which
matter how short, how long, or how complex indeed any type of datathe advantages of comparative method procedures can be introduced
that can be expressed as a matrix of objects and variables can HBto the eld of bioacoustic analysis.
treated in exactly the same manner and will likely deliver results of Last but by no means least, the quantitative representation of acous-
comparable sensitivity. In particular, the shape modeling capabilitie§ic structure is a prerequisite for the construction of reliable automated
of eigensound analysis represent a signi cant advance in the ability o$pecies identi cation systems for use in bat biodiversity and bat conser-
mathematically complex ordination spaces to be assessed, interpreta@fion studies. The bat systematics community is well ahead of other
and used to facilitate communication with others about the nature ofreas of biology in recognizing the important role such systems will
these spaces in a simple, informative, and intuitive visual manner (se@lay in twenty- rst century biological research. The assembly of such
also MacLeod 2002, 2008). systems presumes the existence a generalized approach to the iden-

Once echolocation calls have been quanti ed using the eigensounfication and assessment of within-groups similarities, and between-
approach it becomes possible to address a wide variety of questio@£CUPS di erences among species. Any approach that employs one set
pertinent to improving our understanding of bat systematics, ecology?! variables to identify one group of species, but another set to identify
functional morphology, and phylogenetics. For example, it has lon thers, cannot be turned into a fully automated system easily (see Wal-

been accepted that the form of bat echolocation calls has been di&"s et al. 2012). However, the to the extent that sonogram data can be

termined by the functional needs of hunting particular prey in particu-“sed to represent the information content of bat echolocation calls, the

lar environments (e.g., Schnitzler and Kalko 2001; Jones and Teelin§i9ensound approach is fully generalizable and can be used as a com-
2006). However, this assumption has been challenged recently by Cd/€t€ and su cient system for representing, partitioning, and identify-
len (2012). Part of the problem in studying the phylogenetics of bat"d bat species on the basis of th(_e sonic struc_:ture of their calls. Indeed_,
echolocation is the comparative lack of su ciently detailed descript- € computational overhead required by an eigensound-based system is
ive lexicon that can be used to identify call characters and charactdflatively modest; well within the range of most high-end smartphone
states (see Fig. 4 for an illustration). Treatment of call spectrograms ¥ 0C€ssors (e.g., Apple iPhone). Moreover, any phone withwi capab-
complex 3D morphological structures will facilitate their description ity can be used to upload a call record and control the server software
using morphological terms for which there is a much richer vocabylhat wquld b_e required to perform the necessary calculations with res-
lary than is available in the traditional qualitative or semi-quantitativellts P€ing displayed as a web page.

sound-description domains. While the eigensound results reported here by no means solve the
bat identi cation from echolocation call problem in general or the
Myotis problem in particular, they are the best results that have been
oat?tained to date and the rst to reveal that such clear distinctions
netween di erentMyotis species calls exist. The fact that excellent
yetween-species separations based on call structure were obtained for

genetic studies, the extent to which this assumption is justi ed canno othMyotis-only datasets and mixed-species datasets is unprecedented.

be decideda priori based on the nature of the putative character Orlndeedd, t_he (t:r:ear_lmprovergent Myotlr;s spemei |?ent| c_atlonzlpro-
its mode of description. Rather this is an empirical question that car“iluCe using the eigensound approach suggests thiltis problem

be answered only by carrying out the analyses required to demonstratady have more to do with the descriptive variables that have been used

(or not) the existence of phylogenetically structured patterns of varitraditionally to characterize bat echolocation calls than with the funda-

ation in characters or variables derived. in this case. from the audiBnemal structure of the calls themselves. Additional researchin the area
signal. But irrespective of the results that may be obtained from a test call characterlzatlon_ IS now neede_d, bOt.h n terms of testln_g the ei-
of this hypotheses, the point we are making here is that the eigensouﬁ&nsound gpproach with Iarggr species training sets,. and .testlng altern-
approach to the representation, summarization, analysis, and compﬁt-'ve algorithms that are consistent with the geometric philosophy that

ison of the echolocation call's physical signal structure facilitates thesétanOIS behind eigensound's basic approach to acoustic signal character-

types of analyses in a manner that makes it possible to describe soun'&gt'on and analysis; especially those designed to cope with non-linear

either as sets of continuous variables (e.g., Hanning window Corre&_atterns of variation that may be present with bat echolocation call data

pondences) or, depending on the structure of variation within a set Jéee MacLeod et al. 2007a,b; MacL.eod 2007, 2012 and above).
sampled spectrograms, a series of quanti ed geometric characters and .
character states rather than a series of imprecise categorical asseSsdmmary and conclusions

ments (e.g., high duty cycling-low duty cycling, high frequency-low |n this report we have taken up the issue of acoustic signal analysis
frequency, attenuated-non attenuated) based on the qualitative assesgd asked what (if anything) geometric morphometrics can contrib-
ments of spectrogram patterns or via reference to crude descriptive ifyte to the study of sounds. In particular we have employed a eigen-
dices (e.g., highest frequency, lowest frequency, bandwidth). sound analysis a Procrustes PCA applied to a spectrogram-based 3D
Along these same lines, quanti cation of bat call form will provide characterization of sound structure to analyze similarities and di er-
data analysts with the ability to exert direct control over the degree t@nces within two datasets of bat search calls, a mixed set of ve species
which comparisons based on acoustic data are in uenced by the phyl@and four genera including both easy and challenging call types and a
genetic component of cross-species call comparisons. The mappingsmibre uniform set of nine species from a single gemdgotis which
call form categories o ered by Jones and Teeling (2006) and by Collens widely acknowledged to be di cult to identify to the species level
(2012) show that, to varying degrees, all bat calls should be expectduhsed on traditional spectrogram descriptor variables. In both cases

In performing such an analysis there is an implicit assumption that
call structures of similar form are produced by biologically homolog-
ous physical structures, behaviours, physiological responses to exter
stimuli, functional constraints, etc. However, as has been demo
strated repeatedly in the contexts of comparative method and phyl
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the eigensound approach achieved excellent results, detecting compléting the patterns we observe in geometric terms. The tools of shape
between-groups separation for the training set sample in the rstdatasétteory and geometric analysis, forged as a result of the development
and in the second to an overall accuracy of 94 percent. These result§ geometric morphometrics, have provided the scienti c community
demonstrate the reality of species-speci c distinctions between groswith a set of data-analysis instruments of unlimited potential in terms of
call structures. However, for the purpose of evaluating what level ofts range of conceivable applications. In order to push the morphomet-
performance might be realized as a result of the use of these discrimnics revolution forward into the twenty- rst century morphometricians
inant functions to identify unknown bat calls the cross-validated ancheed to understand both the generalized nature of the tools they possess
jackknifed results are more pertinent. As is typical in such analysesand the geometric dimensions of the interesting questions that exist in
these more robust assessments of discriminant function performancessearch elds far removed from morphometrics' traditional home in
achieve c. 10 percent lower accuracy estimates when compared to res/stematic biology. By expanding the scope of scienti ¢ problems that
ults obtained from analyses of the original training set. We hasten tean be addressed by geometric morphometric methods the morpho-
point out that we are not advocating the discriminant functions obtainedhetrics community can not only make important contributions in areas
during the course in our investigation be used for identifying bat spefar removed from its local neighbourhood of anatomy-based biolo-
cies from their echolocation calls. Our results are indicative only ofgical sciences, it can help reconceptualize problems across the phys-
the type of results that might be realized using a larger bat call trainical, chemical, and humanistic sciences, demonstrate the ubiquity of
ing set. Irrespective of this caveat though, so far as we are aware thes®rphological patterns throughout the nature, and bring some of the
are the best results that have been achieved to date for bat echolocatimost sophisticated analytic approaches in the whole of applied math-
calls using any approach to spectrogram form characterization and/@matics to be bear on their resolution. They can, in a word, continue
analysis. Jackknifed cross-validation analyses of these data also indithe ongoing morphometrics revolution, a continuation that will reap
ate that the discriminant function systems speci ed as a result of thi®ene ts for morphometics and morphometricians, as well as for those
small example analysis are surprisingly robust and would be useful imorking in the elds to which these methods may be applied.
automating bat species identi cations based on echolocation call data
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