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Abstract

Comparative studies of ontogenies play a crucial role in the understanding of the processes of mor-
phological diversification. These studies have benefited from the appearance of new mathematical
and statistical tools, including geometric morphometrics, resampling statistics and general linear
models. This paper presents an overview of how resampling methods may be applied to linear
models of ontogenetic trajectories of landmark-based geometric morphometric data, to extract in-
formation about ontogeny. That information can be used to test hypotheses about the changes (or
differences) in rate, direction, duration and starting point of ontogenetic trajectories that led to the
observed patterns of morphological diversification.

Introduction
A central goal of evolutionary morphology is to explain the origin of
morphological diversity. That diversity is now often termed “disparity”
to distinguish it from the proliferation of species, a distinction that is
important because the proliferation of species may not explain the pro-
liferation of novel morphologies (e.g., Foote 1993; Adams et al. 2009).
The proximate cause of disparity is evolutionary change in ontogeny;
consequently, to understand the processes generating disparity we need
to understand how ontogenies evolve (Zelditch et al., 2003; Adams and
Nistri, 2010; Drake, 2011; Frederich and Vandewalle, 2011; Gerber,
2011; Ivanovic et al., 2011; Piras et al., 2011). Comparative studies
of ontogenies play a critical role in such studies of disparity because
they can discern which modifications of ontogeny are responsible for
disparity, including the modifications that increase disparity, those that
decrease it, and those that maintain it. Disparity itself often has an on-
togeny because species may closely resemble each other during early
states of morphogenesis, diverging thereafter or they may differ sub-
stantially early in development then come to resemble each other. Both
these patterns have been detected empirically. For example, the dispar-
ity of both body shape and diet increase over ontogeny of some dam-
selfishes (Frederich and Vandewalle, 2011) but body shape and diet
show contrasting patterns in piranhas, with body shape disparity de-
creasing over ontogeny as the disparity of diet increases (Zelditch et
al., 2003). Such decreases in disparity over ontogeny have been found
in other groups as well, including body shape of crested newts (Ivan-
ovic et al., 2011), and feet and interdigital webbing of European cave
salamanders’ feet (Adams and Nistri, 2010).

By combining comparative studies of ontogeny with analyses of dis-
parity at two or more developmental stages, it is possible to test hypo-
theses about the developmental origins of disparity. When there are
several modifications of ontogeny, we can ask how much each one,
taken separately, would contribute to disparity of juveniles and adults
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and then how two or more interact with each other. The aim of this pa-
per is to present methods for characterizing the modification of onto-
geny, as revealed bymorphometric data, and thenmethods formodeling
the evolution of ontogeny to discern the impact of those modifications
on disparity at two or more developmental stages.

Shape change: Ontogenetic change as a pheno-
typic trajectory
This paper focuses on ontogeny, but the analysis of ontogenetic change
is a special case of a phenotypic trajectory. A phenotypic trajectory
refers to the extent, direction and rate of any shape change in response
to some factor, which could be geographic (e.g., latitude) or ecological
(e.g., predation pressure). The concepts and methods discussed in con-
text of phenotypic trajectories are thus readily adaptable to any con-
text (see Adams and Collyer 2009, and in this volume). A variety of
statistical tools can reveal how phenotypic trajectories differ; our ob-
jective in this paper is to discuss regression models and resampling
techniques as applied to ontogenetic trajectories. We begin by apply-
ing resampling methods to a simple bivariate regression model, ex-
tending that to a multivariate regression for a single group and then to
multiple groups by multivariate analysis of covariance (MANCOVA).
Once MANCOVA establishes the statistical significance of differences
in ontogenetic trajectories, a series of more specialized tests are used
to characterize those differences.

Ontogenetic trajectories are complex to model because they com-
prise two distinct categories of variables: shape variables, and size and
age variables. Whereas size and age are typically univariate measure-
ments (scalar values), shape is multivariate, comprising multiple vari-
ables such as the coordinates of many landmarks. In this paper, we
will typically discuss shape’s dependence on size, but the same mod-
els extend to age-based analyses. The samples of shape and size may
be taken continuously throughout ontogeny or at two or more times. In
the first case, shape’s dependence on size is modeled by a single line;
in the second case its dependence may be modeled by several line seg-
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Figure 1 – Simple representation of a pairwise comparison of growth and development
of two groups in a two dimensional morphospace. The circles and triangles represent
the shapes of the two groups at the outset and end of the developmental stage, the ar-
rows represent the ontogenetic trajectory. (A) Di�erence in the direction of ontogenetic
trajectory, but equal magnitude of net change and a common shape at outset. (B) Over-
lapping trajectories with a common starting shape and direction, but unequal magnitude
of net ontogenetic change. (C) Trajectories with di�ering directions and magnitudes. (D)
Parallel trajectories with equal magnitudes of net change, with an elevation change in
the outset shapes. (E) Overlapping parallel trajectories with a shift in outset shape along
the direction of the trajectory and unequal magnitudes of change. (F) Parallel trajectories
with both elevation changes and a shift along the trajectory of the shape at outset. (G)
Equal length trajectories, showing divergence in shape over ontogeny. (H) Equal length
trajectories showing convergence over ontogeny.

ments. This paper focuses on the analysis of a single linear segment
because multiple segments may be analyzed by repeated application
of the single segment models. The regression models used to analyze
shape data may be readily adapted to discrete samples using dummy
coding techniques. A linear model over a continuous covariate (age or
size) suffices for both cases.

Fig. 1 shows a range of possible differences in growth and develop-
ment of two organisms between two stages of development. The on-
togenetic trajectory is the description of the change in shape from one
stage to the next (Fig. 1). The trajectory itself may thus differ in dir-
ection, in length (magnitude) or in both. In addition to alterations in
the trajectory, the shape at the outset of the trajectories may differ, due
to alterations in development prior to the earliest stage. Differences in
shape at this outset stage may be divided into elevation changes (Fig.
1D) and shifts in shape along an ontogenetic trajectory (Fig. 1E). This
division of shape changes into two distinct categories at the outset be-
comes important when the trajectories share a common direction. El-
evation changes (i.e., perpendicular to the common direction of the tra-
jectory) produce parallel trajectories (Fig. 1D), while shifts along (i.e.,
parallel to) the trajectory produce overlapping trajectories (Fig. 1E),
such that one group’s juvenile resembles an older or younger age-class
of the other group. In that case, their trajectories overlap but the age-
classes differ in shape because of a shift in starting point along (parallel
to) the trajectory. That can arise from differences in rate and/or dura-
tion of development prior to the youngest observed phase. A series of
resampling tests based on linear models, and flowcharts illustrating a
procedure for their use will be presented to address each of the pos-
sible differences in both the ontogenetic trajectory itself (direction and

magnitude), differences in outset shape (elevation and shifts along a
common trajectory) and duration of growth along the trajectory.

Resampling methods for testing a bivariate re-
gression model
Classical parametric statistical methods use mathematical models of
statistical distributions to calculate the distributions of test statistics.
When the observed value is extreme relative to the distribution im-
plied by the null hypothesis, it is possible to reject that null hypothesis
at some calculated probability level. One alternative is to use Monte
Carlo methods in which statistical models are fit to the data and then
used as the bases for numerical simulations, which then can be used
to determine the probability that the observed data was produced by
a given null model (see Manly 1997 for examples). Resampling meth-
ods offer another approach. Resampling methods refer to a group of re-
lated methods (permutations, bootstrapping and jackknifing) that, not
surprisingly, use resampling of the data to generate the distribution of a
test statistic under the null hypothesis; the idea dates to Neyman (1923);
Fisher (1935), and Pitman (1937) but practical application had to wait
until inexpensive (and fast) computers became widely available (Efron,
1979; Efron and Tibshirani, 1998; Good, 2000, 2005).

The general process of constructing a resampling test consists of
three distinct parts: (1) stating the null hypothesis, (2) determining
what test statistic to use, and (3) deciding how to carry out the res-
ampling. As a starting point, consider an ordinary bivariate linear re-
gression model of the size of one trait (Y ) relative to the size of another
(X):

Y = MX +B + ε (1)

M is the slope, B is the intercept and ε is a random error term (the re-
siduals). Analytic approaches typically assume ε is an independently
distributed random normal term with a mean of zero. Based on these
assumptions, analytic statistics test the null hypothesis that there is no
dependence of Y onX using test statistics such as the correlation coef-
ficient R, or the estimate of the slope (M ); the null is rejected if R is
statistically significantly different from zero, or the confidence interval
ofM excludes zero. The value ofR2 also expresses the fraction of the
variation in Y explained by X (which could, in principle, be used to
test the null hypothesis). These analytic tests require algebraic models
of the underlying distributions.

Resampling uses numerical randomization procedures to conduct
the statistical tests. As noted, above, the first step is to state the hy-
pothesis we want to test. It might seem that we have two, the first being
that the correlation between Y and X is zero and the other that the
slope is zero, but these are equivalent in that they assert that the model:

Y = B + ε (2)

is equally effective at predictingY as the originalmodel which included
X . The second model is called the “reduced model” because it omits
a term (X) present in the full model. Whether we choose R, R2 orM
as our test statistic, the null model states that the reduced model will
often produce a value of that statistic as extreme (i.e., as far from zero)
as the full model (Eqn. 1). Because the omitted term is X , under the
null hypothesis, the relationship between X and Y is not important.
An important concept in the theory of resampling is that this makesX
exchangeable under the null hypothesis (see discussions in Good 2000;
Anderson 2001). That means that we could exchange the X value of
any given specimen with that of any other specimen because, under the
null hypothesis, this relationship is not important.

IfX is exchangeable, the null model predicts that a randomly created
version of the original data, in which the association between theX and
Y values is randomized, will yield a similar distribution of values for
any of our test statistics when the (full) regression model (Eqn. 1) is
fit to the randomized data. Thus, if we create many such resampled
versions of the data, we could generate a distribution of values of the
test statistic under the null model. We can then use this distribution to
determine the percentage of trials in which the observed value for that
test statistic is as far from zero as the observed one. This is what we use

68



Resampling statistics for ontogenetic studies

as our estimate of the p value. For example, if we are using R as our
test statistic, and our observed value is 0.85 and a value this high never
appeared in 999 trials, we would get a p = 1

999+1 = 0.001 or 0.1%.
Note that we treat the original data as one possible resampling of the
data; we resample 999 times and the 1000th value is the observed one
– it therefore counts as a large value in the calculation of the p-value.

There are several different ways to resample the data that differ in two
major respects. One is in how the data are selected and handled in the
randomization, the other is in what exactly is permuted, the raw dataX ,
or residuals (from either the full or reducedmodel). For hypothesis test-
ing, permutation (or resampling without replacement) is thought to be
the most effective approach, although permutation and bootstrap meth-
ods are thought to be asymptotically equivalent (Romano, 1989;Manly,
1997; Good, 2000). When permuting the data, the order of the X val-
ues is randomized and re-assigned to the Y values (see Manly 1997;
Good 2000). When bootstrapping the data, which is resampling with
replacement (Efron, 1979; Efron and Tibshirani, 1998), the individu-
als’ values are randomly drawn, and each random draw is independent
of all the others so a given individual’s value may be used more than
once or not at all. When jackknifing the data, a relatively small per-
centage of the specimens (from one specimen up to as many as 50%
of the total) at a time are removed and the calculation is repeated. In
addition to the distinction between the resampling procedure, methods
differ according to what they permute (or bootstrap or jackknife). An
alternative to permuting or bootstrapping the observed values (X) is to
permute the residuals (ε) of the reduced model (Eqn. 2, which in this
case implies that there is no slope, only a mean value and random vari-
ation around the mean). In this approach, the reduced model is fitted
to the data and the residuals are computed and used in the permuta-
tion, as the null model implies that there is no ordering or relationship
of the residuals relative toX or Y . Resampling residuals is thought to
be more effective than simply permuting the observed (raw) variables
(Anderson and ter Braak, 2003).

Example: Bivariate regression using di�erent
resampling methods
The following example is meant to show a range of different resampling
methods applied to a simple bivariate regression model. If we start
out with a set of measured values of the dependent and independent
variables:

X =[2.10 2.71 3.15 3.44 4.06 4.34 5.18 5.27
5.79 6.34 6.41 7.79]

(3)

Y =[6.54 7.69 9.10 9.15 10.86 11.47 13.46
13.67 14.60 16.00 16.14 19.40]

(4)

fitting the full linear regression model, Y = MX + B + ε we get
estimates for the slope and intercept, and an R value

M = 2.2615 B = 1.6772 R = 0.9992 (5)

We can then use the model to find the predicted values of y under
the full model, and the residuals ε = Y − Ypredicted

Ypredicted,full =[6.43 7.81 8.80 9.46 10.86 11.49 13.39
13.60 14.77 16.01 16.17 19.29]

(6)

εfull =[0.11 0.12 0.30 -0.31 0.00 -0.02 0.07
0.08 -0.17 -0.02 -0.03 0.11]

(7)

For the reduced model (with no slope) Ypredicted,reduced = B + ε

Ypredicted,reduced =12.34 (8)

ε =[-5.80 -4.65 -3.24 -3.19 -1.48 -0.87
1.12 1.33 2.26 3.66 3.80 7.06]

(9)

Based on these, we can see how the various types of resampled sets
are formed. If we wanted to permute the variable itself, we would ran-
domize the ordering of Y and regress this permutation set onX

Yperm,variables =[13.46 11.47 19.40 9.10 16.00 13.67
16.14 10.86 9.15 6.54 7.69 14.60]

(10)

To permute residuals under the reduced model, we would per-
mute them and add the permuted values to the predicted Y value
(Ypredicted = B) under the reduced model

Yperm,residuals = [1.33 2.26 7.06 -4.65 3.66 -3.24
1.12 -3.19 -5.80 3.80 -1.48 -0.87]
+ 12.34
= [13.67 14.60 19.40 7.69 16.00 9.10

13.46 9.15 6.54 16.14 10.86 11.47]

(11)

A bootstrapping of the variables themselves might result in

Ybootstrap,variables =[16.00 9.10 19.40 10.86 9.10 9.15
13.67 11.47 10.86 16.00 13.67 13.46]

(12)

Notice that in Ybootstrap,variables, several values (16.00, 9.10,
10.86, 13.67) appear several times, while other values are omitted al-
together. In contrast, in Ypermutation, residuals, each value in the ori-
ginal data set appears once and only once. If we bootstrap the residuals
of the reduced model and add them to Ypredicted, we get

Ybootstrap,residuals = [7.06 -3.19 3.66 3.66 -1.48 1.12
-5.80 -5.80 1.12 3.66 7.06 -4.65]
+ 12.34
= [19.40 9.15 16.00 16.00 10.86

13.46 6.54 6.54 13.46 16.00 19.40 7.69]

(13)

and we can again see that some residual values (e.g., l7.06, 3.66, 1.12,
-5.80) appear two or three times in the bootstrap set.

The original correlation was high, R = 0.992, and perhaps not sur-
prisingly, in 9999 trials of each permutation and bootstrap, no res-
ampled sets ever produced an R greater than or equal to 0.992. Since
one of the 10000 (i.e., the original data) did have an R that large, the
estimated p value is 1

10000 , or p = 0.0001. There are 12! (just over 479
million) possible permutations of the 12 values or residuals for this ex-
ample, so 10000 trials does not come close to exhausting all possible
combinations. Some authors urge using 1000 to 2000 trials in permuta-
tion tests (e.g., Manly 1997), but an alternative is to start with a relat-
ively small number of trials and work upwards. If your p-value is 0.40
for 100 trials, running more trials to determine that p = 0.3874 is not
productive. However, when the p-value is low relative to the desired α
value, it is advisable to run several repetitions at 1000 to 2000 trials to
see if that estimate is stable and reliable, increasing the number of trials
until a stable estimate of p is obtained. Because resampling methods
involve random processes, variance in the exact p-value obtained is ex-
pected. It may be necessary to run a relatively large number of trials to
ensure that the variability in estimates of p are well below the desired
α level. While the variation in p-value may seem worrisome and less
precise than those from analytic tests, it is important to remember that
analytic estimates of p-values are influenced by violations of the as-
sumptions in the underlying analytic models, as well as by non-random
sampling. Their apparent high precision may sometimes be illusionary.

Note that bootstrap and permutation methods assume that residuals
are independently distributed, and that the data comprise a represent-
ative sample of the underlying population. These methods are not as-
sumption free because they share some basic assumptions common to
most statistical approaches.

Multivariate regression model
A wide range of methods have been used to capture information about
the shapes of organisms. We focus here on the formalism of landmark-
based geometric morphometrics (Bookstein, 1991; Dryden and Mar-
dia, 1998; Adams et al., 2004; Zelditch et al., 2012), in which speci-
mens are represented by a set of k landmarks measured in m dimen-
sions; for 2D data, m = 2, and for 3D data, m = 3. One major
advantage of landmark-based geometric morphometrics is the avail-
ability of a well characterized and robust distance metric, a univari-
ate measure of the differences in shapes called a Procrustes distance.
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We will assume that the data are superimposed by a Generalized Pro-
crustes Analysis (GPA) so four degrees of freedom are used up when
superimposing 2D landmarks and seven are used up when superimpos-
ing 3D landmarks. It is possible to include semilandmarks, i.e., points
spaced along a curve or outline; these differ from landmarks in that they
have only one degree of freedom per semilandmark for 2D data when
semilandmark alignment procedures (“sliding”) are used with semi-
landmark data (Sampson et al., 1996; Bookstein, 1997; Zelditch et al.,
2012). This distinction becomes important when we consider estimat-
ing variance-covariance matrices later in this section.

In the case of shape data, the dependent variable Y is a vector quant-
ity, denoted by Y, each specimen is a row vector of k measurements
per specimen. Our independent variableX is still a scalar, but the slope
is now also a vector M, as is the intercept B. The error (residual) term
E now also consists of a row vector of k values for each of the N spe-
cimens in the data set. This gives us a full model

Y = MX + B + E (14)

and a reduced form
Y = B + E (15)

where M is the multivariate equivalent of the slope.
Like a univariate regression model, the significance of the full model

may be estimated by a permutation test in which the residuals of the re-
duced model are permuted. The test statistic will be a version of an
F-ratio because the F-ratio is the traditional statistic used in univari-
ate analysis of variance (ANOVA and/or ANCOVA). There are many
forms of F-ratios used in different experimental designs but all are ra-
tios of sums of squares terms weighted by the degrees of freedom so
they are akin to ratios of variances. In analytic models of multivari-
ate data, the usual approach is to replace the sums of squares terms
by a sum of squares and cross-products (SSCP) matrix. This is a ma-
jor change relative to univariate data, not only because it requires a
very large sample size to estimate the matrix reliably but because it
requires a matrix inversion. For that inversion to be possible the vari-
ables must be linearly independent of one another and the degrees of
freedom in the data must match the degrees of freedom in the meas-
urements. But superimposition removes either four or seven degrees of
freedom (and even more when semilandmark alignment is used) so the
matrix is not of full rank. That is why partial warp scores (see Book-
stein 1989) were typically used in multivariate statistical procedures
that require the variance-covariance matrix to be invertible. Unfortu-
nately, the matrix of partial warp scores is not of full rank when the data
include semilandmarks. One approach is to reduce the dimensionality
of the data using principal components, and to use the principal com-
ponent scores in the analysis. That, however, does not solve the prob-
lem of estimating large variance-covariance matrices when the sample
sizes are relatively small, and by “relative” here we mean relative to the
number of landmarks plus semilandmarks.

Fortunately, there is another approach. We can work with pseudo
F-ratios (Verdonschot and ter Braak, 1994; Legendre and Anderson,
1999), which are based on summed square distances of specimens
about the mean rather than SSCP matrices. A distance metric, which
for shape data is the Procrustes distance, is used to compute the sums
of squares terms (SS), which are now scalars (simple distances) rather
than SSCPmatrices. For the simple regressionmodel above, the F-ratio
would be calculated as:

F = SSModel/dfModel

SSResiduals/dfResiduals
(16)

SSModel = SST otal − SSResiduals (17)

All sums of squares terms may be computed from a matrix of the
pairwise distances between specimens (the outer product matrices,
McArdle and Anderson 2001) because the sums of squares about the
mean is proportional to the sums of squares between specimens. These
methods were developed for a range of different types of statistical
questions by Anderson and colleagues (Legendre and Anderson, 1999;
McArdle and Anderson, 2001; Anderson and ter Braak, 2003) using a

variety of different distance metrics, paralleling Goodall’s (1991) de-
rivation of the approach based specifically on Procrustes distance, ad-
apted and generalized by Rohlf (2009) for permutation tests of regres-
sion models and MANCOVA designs. The availability of these pseudo
F-tests (or Generalized Goodall’s F-ratios) greatly speeds calculations
in permutation tests, as well as having a number of other advantages
(Anderson and ter Braak, 2003), plus the approach is readily adapted
to a variety of experimental designs whether the data are univariate or
multivariate. There are several different forms of Procrustes distances
(see Dryden and Mardia 1998, or Zelditch et al. 2012), the form em-
ployed mostly commonly is properly called a partial Procrustes dis-
tance, in which the centroid size of all specimens is scaled to 1, and
inference is carried out in the linear tangent space of the underlying
curved space. The term “Procrustes distance” used hereafter refers to
this partial Procrustes distance.

This set of ideas allows us to test the statistical significance of a linear
regression model fitted to shape data; the pseudo F-ratio is determined
for the full model and compared to the pseudo F-ratio derived from a
large number of permutations of the residuals of the reduced model.
From that we arrive at an estimated p-value for the pseudo-F statistic.
This is precisely what we did when estimating the confidence interval
for a test statistic in the univariate case.

Comparing ontogenies: Establishing evidence of
di�erences in trajectories
To compare trajectories among two or more groups, the first step is to
verify that there are statistically significant differences (of some kind)
in the ontogenetic trajectories. Once that is established, we can go on to
attempt to determine the nature of those differences. Simply computing
the ontogenetic trajectories for each group and immediately doing pair-
wise comparisons of all the features of the trajectories rapidly leads to
Bonferroni problems in the overall significance of the results (i.e., that
there are statistically significant differences in the trajectories) because
of the very large number of possible pairwise comparisons, which leads
to an increased rate of false positive results if each test is done at the
typical 5% alpha level. One can use a Bonferroni correction, carrying
out each test at a lower alpha level to obtain overall results at the desired
5% alpha level, but another approach is a single overall test to establish
overall significance at the desired alpha level. The first step is therefore
a MANCOVA. To explain this, we introduce a factor A, the member-
ship of each individual in a group, such as “species”, which is a level
in the factor A. In our full model M is now a function of A, as are the
intercept terms:

Y = M(A)X + B(A) + E (18)

with the reduced model being:

Y = MX + B(A) + E (19)

This is sometimes called the common slopes model because it says that
all groups share a common trajectory. The common slopes model itself
has a reduced model with no slope at all:

Y = B(A) + E (20)

To test for statistically significant differences in the slopes M(A),
we would form a pseudo F-ratio of the sums of squares (SS) explained
by the model divided by the residual SS and then form permutation
tests based on permutation of the residuals of the reduced model. Note
that this permutation version of the F-ratio test does not assume equal
variance at each landmark, nor does it assume that variances at each
landmark are independent of one another. If this pseudo F-ratio is stat-
istically significant at some desired level of confidence (based on an es-
timated distribution of pseudo F-ratio values obtained by a permutation
or bootstrap test), it is then reasonable to proceed to a series of pairwise
tests to understand the nature of the differences. Repeated use of the
above procedure can determine which the levels of the group factor ac-
tually differed from one another. The tests discussed below can be used
to determine the nature of those differences (rate of change, direction
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of change or both). It is important to note that the common traject-
ory model is the null hypothesis in this procedure. The failure to reject
the null may depend on sample size; the test is subject to some un-
known rate of type II error, so accepting the null of common trajectory
(M) is not the same as a statistical proof that the trajectories are in fact
common. Effect size in these systems (the magnitude of differences
in slope, or in the variance explained) may also provide some insight,
and should not be neglecting when examining the results of an F-test.
Carefully structured tests based on geometric morphometric methods
are thought to have high statistical power, and may detect statistically
significant results when the differences in shape are too small to be of
biological significance, particularly with relatively large sample sizes.
Examination of the effect size involved in a comparison may thus be
informative, both when the null is rejected, and when it is not.

Tests for di�erences in direction
Once a difference in the two vectors is known to exist, we need to de-
termine if this is a difference in direction, in magnitude, or in both.
Since we have two vectors, we can compute an angle between them,

cos(θ) = M1 ·M2

|M1||M2|
(21)

where the numerator is the dot product of the two vectors and |M| is
the magnitude of a vector M. The angle between the two describes a
difference in direction independent of the length (because the vectors
are normalized to unit length), so the angle is a reasonable test statistic
for differences in direction.

One null hypothesis addressing the need to determine if two onto-
genetic trajectories are in the same direction may be stated as: The
observed angle between the trajectories is no larger than might be
observed by randomly selecting two samples from within one of the
groups. That is, if we estimate the vector for each of two ran-
dom samples drawn from a single population, and calculate the angle
between them, the observed angle might not be large relative to the dis-
tribution of the angles under the null. To perform that test, we would
calculate the vectors for each randomly drawn sample from a single
group and compute the angle between them. A bootstrapping pro-
cedure can be used to estimate the range (or confidence interval) of
angles that might appear within each sample (bootstrap methods allow
for estimating confidence intervals from the range of variance within
a sample via resampling). Bootstrapping is used here rather than per-
mutation because there is no assumption of exchangeability here. In-
stead we are using the bootstrap to estimate the magnitude of variability
in a derived measurement (the angle).

To compute the range of angles possible within a sample, the full
regression model (eqn. 14) is fit to the data, and the residuals are cal-
culated. Bootstrap samples are then produced by resampling the resid-
uals with replacement to create two bootstrap sets, of the same sizes
as the original data sets. To be conservative, both bootstrap samples
of the smaller data set are limited to its sample size. The vectors are
then calculated for each of the bootstrap sets and the angle between the
bootstrap sets is determined. This is repeated for some large number
of bootstrap sets for both groups to determine the confidence intervals
of angles generated within each. The observed angle between the two
groups may be judged statistically significant at the desired α if it lies
beyond the 1− α confidence interval of both bootstrap sets. Failure to
reject the null does not mean that the angle between the two trajector-
ies actually is zero because the null result depends on the sample size
and the unknown rate of type II error.

Tests based on distances between groups
Once the differences in ontogenetic trajectories have been identified,
there are still some questions remaining about changes in ontogenies.
One is whether the trajectories start at a common shape (Fig. 1B com-
pared to 1E for example). Another is whether the adults are more, less
or equally as different the juveniles are (Fig. 1G and 1H). Still an-
other is whether one group undergoes a longer or shorter interval of

net shape change than another (Fig. 1A compared to 1C, as one pos-
sibility). These questions can all be answered using differences in Pro-
crustes distances between the means of groups, as shown in Fig. 2.
Obtaining adequate estimates of the populations at these juvenile and
adult stages is the difficult part of the process. The ideal situation is to
have good collections of specimens at each stage, the second option is
to attempt to estimate the mean shape and variation in the population at
these stages based on the regression model and an estimate of the value
of the independent variable X at each stage (see Frederich and Sheets
2009; Zelditch et al. 2012).

To test for differences in the mean shapes of two groups (at either ju-
venile or adult stage), the pseudo F-test based on the regression model
discussed above may be used. In this pairwise test, the group mem-
bership of specimens is dummy coded as the independent variable X .
Members of the first group are assigned anX value of 1/N1, members
of the second group are assigned a value of -1/N2. Other approaches to
dummy coding are possible, this approach simply yields a mean value
of zero for the dummy codes. Shape is then regressed on these dummy
codes (X), and the permutation F-test is used to determine if the re-
gression is statistically significant, indicating a difference in the mean
juvenile shape. This procedure is equivalent to a permutation test based
onGoodall’s F, which has also been used to study ontogenies. The same
test could be used to test for differences in adult shapes.

Confidence intervals for the Procrustes distance between means of
two groups may be constructed by bootstrapping the residuals around
themean shape of each group. Both groups are resampledwith replace-
ment, and the distances between means recalculated for each bootstrap
set. This allows for comparisons of shape differences from juvenile to
adult shapes (i.e., the length of the ontogenetic vector), or from adult
to adult (A1−2), or from juvenile to juvenile (J1−2), as shown in Fig.
1G, 1H and 2.

The net shape change during growth for two groups could be com-
pared by comparing the distances from mean juvenile to mean adult
shape for the two groups (δ = |A1−2| − |J1−2|). Convergence on an
adult form would imply the adult-to-adult distance for the two groups
is smaller than the juvenile-to-juvenile distance (Fig. 1H). Conversely,
divergence implies that the juveniles are more similar than the adults
(Fig. 1G). It is possible to construct a bootstrap test of the observed
differences in distances. For example, if we want to test the hypothesis
that the distance from the mean of group A to the mean of group B
(DAB) is greater than the corresponding distance from groups C to E
(DCE), we could use the difference in distances, δ = DAB −DCE as
our test statistic, measuring all distances in Procrustes units. We would
then form a series of bootstrap sets of each of the sets A, B, C and E,
bootstrapping within each, and then compute δ for each bootstrap set,

Figure 2 – Diagram of two ontogenetic trajectories with parallel ontogenetic trajectories
lying along directions indicated by the multivariate regression slopes M1 and M2 . The
vectors J12 and A12 refer to the vector di�erences between the juveniles and adults of
the two species.
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generating a confidence interval on δ. If this interval excludes zero,
then we can claim that δ is statistically significantly larger than zero.

Test of di�erences in elevation and shifts in
starting position along the trajectory
A difference in elevation of two trajectories refers to a difference in
juvenile shapes that is not along the ontogenetic trajectories, but rather
perpendicular to it (Fig. 1D, 1F). If we have a common direction of the
ontogenetic trajectory along the multivariate slope M and a difference
vector between juvenile forms J1−2, then the elevation term would be
the component ofJ1−2 perpendicular toM and the shift of the juvenile
form along the trajectory would be the component of J1−2 parallel to
M (Fig. 2). The parallel component is

Jparallel = J1−2 ·M
|M| (22)

and
Jelevation = J1−2 − Jparallel (23)

If the Jparallel term is non-zero, then its dot product with M should
always have the same sign, and should exclude zero, a hypothesis that
can be tested via a bootstrap procedure. The magnitude of Jelevation

could be tested computing the dot product of Jelevation,bootstrap de-
rived from the bootstrapping procedure with the observed value of
Jelevation to see if this dot product is also positive and excludes zero.
Simple examination of the magnitudes (lengths) of these vectors would
not necessarily be adequate, as distances are always positive. Random
variation might generate small but non-zero values of these vectors,
requiring the use of the dot product to detect random reversals in dir-
ection, which would not be consistent with a meaningful direction and
magnitude of these components.

Overlapping trajectories
Overlapping trajectories would be a special case of parallel trajectories,
but one in which the juvenile and/or adult shapes varied due to differ-
ences in rate along the trajectory or duration of shape change along
the trajectory and/or shifts of the starting point along the trajectory
(Fig. 1B, E). Overlapping trajectories would have a zero angle between
them, and a non-significant difference in elevation, but might differ in
magnitude of the ontogenetic trajectory and/or net shape change from
juvenile to adult and/or exhibit shifts in juvenile shape along the tra-
jectory.

Mitteroecker et al. (2005) looked for similar evidence of overlapping
trajectories by fitting independent regression models to the specimens
of each groups using the standard sum of squared residuals approach,
but then used as a test criteria only the component of the residuals per-
pendicular to the predicted trajectory. This perpendicular component
was then tested against a permutation of specimens among groups, test-
ing the null hypothesis that groupmembership did not matter in predict-
ing the perpendicular portion of the residuals, only the portion of the
residuals along the trajectory as, specimens moving at different rates
along the trajectory would be displaced parallel to the trajectory, not
increasing the perpendicular error. If the null hypothesis is true, then
the observed summed squared perpendicular errors would be consist-
ent with the observed range of summed squared perpendicular errors
generated by the permutation process.

Statistics derived from the parameters in regres-
sion models
In some situations it may be desirable to estimate derived statistics
based on the results of a regression analysis. For example, if we want
to compute the distance from the mean juvenile shape of one group to
the mean juvenile form of a second group (|J1−2|), and use a bootstrap
procedure to estimate a confidence interval on this distance, the ideal
situation would be to have large sample of both groups of juveniles.
In many situations, however, the researcher has a series of specimens

sampled over wide range of sizes. As noted above, it is possible to es-
timate the predicted shape at a given juvenile size, and to use the resid-
uals from the regression model to estimate variation around the mean
juvenile shape. The distance between the means of two groups can then
be estimated based on these bootstrap samples. In carrying out such an
analysis, the within sample bootstrapping should be done on the resid-
uals from the regression model, and that model should be refit to the
predicted values to re-estimate the mean juvenile shape. That should
be done at each iteration of the bootstrap to take the uncertainty of the
regression into account.

Disparity
This approach can be used to estimate the uncertainty in derived stat-
istic such as the disparity of a clade, which may be computed at both
adult and juvenile states as was carried out in Zelditch et al. (2003).
Disparity at any ontogenetic stage may be measured as:

Disparity =

m∑
i=1

d2
i

(m− 1) (24)

where the sum is taken over all groups i out of m, and the distance d
is the Procrustes distance from the mean of the i-th group to the mean
of the group. Zelditch et al. (2003) examined disparity for juvenile and
adult piranhas over several groups, using continuous ontogenetic series.
To compare the juveniles and adults, the expected values for given sizes
and the residuals were obtained from the regression model. Disparity
was then calculated based on these predicted shapes, and confidence
intervals for disparity were obtained by bootstrapping the residuals of
the regression models, recalculating the regressions and re-estimating
the disparity for the bootstrap sets. The bootstrapping procedure here
incorporated the uncertainty in the regression model. The modeling
procedure also allowed for creating hypothetical ontogenies, in which
species were simulated to share common juvenile shapes, directions
and/or rates, to see the impact of each parameter, singly and in com-
bination, one the diversification of morphology. The simulations used
bootstrapped residuals from the regression models employed to estim-
ate the uncertainty in the simulated trajectories and resulting disparity
values, in addition to the observed trajectories and disparities.

An approach to combining the tests
The individual tests presented here may be combined to determine the
types of differences in ontogenetic trajectories present in a number of
distinct groups of specimens. The sequence of tests shown in Fig. 3

Figure 3 – Flowchart illustrating an approach to combining resampling tests to determine
the types of di�erences in ontogenetic processes in two or more groups of specimens.
Solid square boxes indicate a specific test, ellipse indicate decisions made based on the
outcomes of the tests and the dashed boxes indicate what types of pairwise tests may be
carried out to complete the analysis (Fig. 4 and 5).
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Figure 4 – The set of tests applicable to a pair of species with a shared multivariate slope,
indicating parallel trajectories. The three tests may be carried out in any sequence, and
need not all be used if they do not meet the goals of a study.

starts off with a MANCOVA of shape based on size and group, fol-
lowed by a series of pairwise tests of the differences between groups
(Fig. 4, 5). It is important to note that not all tests shown in these fig-
ures will be necessary for all analyses, the flowcharts are intended to
be exhaustive in covering all possibilities. Some authors would chose
to omit the pairwise MANCOVA step in favor of proceeding directly
to the pairwise angle and trajectory length tests, on the grounds that
the angle test adequately addresses the issue of pairwise differences in
direction.

Figure 5 – The set of tests applicable to a pair of species with unequal multivariate slopes.
The first and second test are independent of one another, but the result of the second
test (di�erences in direction) does have a bearing on which of the remaining tests are
applicable.

Conclusions
The combination of resampling methods, hypotheses based on general
linear models and the well-established Procrustes distance as a meas-
ure of shape differences allows for a systematic and flexible approach
to describing and testing how two or more ontogenetic trajectories dif-
fer. Most of the tests discussed here are available in specialized soft-
ware such as the tps series (Rohlf, 2009) and IMP series (Sheets, 2001-
2012; Zelditch et al., 2012). Customized bootstrapping and permuta-
tions methods are readily developed in R (see Good 2005), the adonis
function in the vegan package (Oksanen et al., 2013) in R handles per-
mutation MANCOVA, as does the DistLM program (Anderson, 2005).
Several R scripts are either generally available or can be obtained by
request from the authors that allow for testing many of these hypo-
theses about the evolution of ontogenies (Adams and Collyer, 2009;
Gerber and Hopkins, 2011; Piras et al., 2011), making the approach
outlined in this paper available to R users. The ongoing development
of shape distance metrics, distance-based statistical tests, resampling
methods and related software provide a steadily increasing set of ana-
lytic tools to examine morphological change in organisms, providing
powerful methods for research in these areas.
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