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We briefly and informally review the concepts of size, shape, and form and how they are estimated
in geometric morphometrics using Procrustes analysis. We demonstrate how deformation grids
and reconstructed shapes or forms can be used as powerful tools to visualize shape and form differ-
ences. Complex patterns of individual or group differences can be studied effectively by ordinations
of shape space or form space. Allometry, the statistical relationship between size and shape, is es-
timated in geometric morphometrics by regression of the Procrustes shape coordinates on centroid
size. We illustrate these methods by an application to human face shape. We reveal shape cues to
body size in the adult male face, partly resembling ontogenetic allometry. Facial allometry might
thus be an important confounding factor in studies of face perception and human mate choice.

During the last two decades, geometric morphometrics became the
state-of-the-art method for statistical shape analysis in biology (Rohlf
and Marcus, 1993; Bookstein, 1996; Adams et al., 2004; Mitteroecker
and Gunz, 2009; Klingenberg, 2010). In this paper we briefly and in-
formally review the concepts of size, shape, and form, and how they
are estimated in geometric morphometrics. We further discuss how
the classic concept of allometry is analyzed in contemporary geomet-
ric morphometrics and illustrate this by an application to human facial
form. In the Appendix we provide some algebraic details on the visu-
alization of shape and form differences.

Size and shape

It is a common practice in morphometrics to distinguish between the
size and the shape of a biological structure. The shape of an object
are the geometric properties that are invariant to translation, rotation,
and scaling. In other words, the shape of an object is unaffected by
changes in the position, the orientation, and the size of the object. Two
objects have the same shape if they can be translated, rescaled, and
rotated to each other so that they match exactly. For instance, the shape
of a rectangle, which can be described by the ratio of the two different
side lengths, does neither depend on the size of the rectangle, nor on
its position and orientation. By contrast, the term form refers to the
geometric properties invariant only to translation and rotation. Hence,
form can be considered as “size-and-shape” (e.g., Dryden and Mardia
1998). The form of a rectangle (measured, for instance, by the two side
lengths or by one side length together with the ratio of side lengths)

*Corresponding author
Email address: philipp.mitteroecker@univie.ac.at (Philipp MITTEROECKER)
Hystrix, the talian Journal of Mammalogy ISSN 1825-5272

© @ 2013 Associazione Teriologica ltaliana
doi:10.4404/hystrix-24.1-6369

does not depend on the position and orientation of the rectangle, but
both on its size and shape.

The size or scale of different objects is easy to quantify when the ob-
jects all have the same shape. For a set of rectangles, all of the same
shape, any side length or diagonal length would be an equally suitable
size measure. But whenever shape varies, size is an ambiguous concept
and no unique quantification exists. For a set of rectangles varying both
in size and shape, a single side length as size measure would be affected
both by changes in shape (ratio of side lengths) and by changes in scale.
Composite size measures, such as functions of the sum or of the product
of the side lengths, may be less affected by shape changes than single
measurements. Ultimately, it is up to the researcher to decide, based
on biological considerations, whether a single measurement or a com-
posite variable is the most useful size measure.

In contrast to classical morphometric approaches based on linear
distances and angles, geometric morphometric methods are based on
the Cartesian coordinates of measurement points, so-called landmarks.
Landmarks have a position (two or three coordinates) and a name, ex-
pressing some sort of homology across all measured specimens (Book-
stein, 1991). Since the geometry of the measured landmark config-
uration is preserved by the set of landmark coordinates, geometric
morphometrics allows for effective visual representations of statistical
results as actual shapes/forms or shape/form deformations (e.g., Book-
stein 1991, 1996; Rohlf and Marcus 1993; Zollikofer and Ponce de
Leon 2002; Adams et al. 2004; Zelditch et al. 2004; Slice 2007; Mit-
teroecker and Gunz 2009).

The most common measure of size used in geometric morphometrics
is centroid size (CS): the square root of the summed squared distances
between all landmarks and their centroid (Fig. 1). The centroid of a
landmark configuration is the average (arithmetic mean) of all land-
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Figure 1— A configuration of four landmarks (A-D) with their centroid, which is equal
to the average landmark position. Centroid size, the size measure used in geometric
morphometrics, is equal to the square root of the summed squared distances between
the landmarks and their centroid (square root of the summed squared lengths of the
dashed lines).

marks. Centroid size is a composite size measure based on all land-
marks and is proportional to the square root of the summed squared in-
terlandmark distances. It has been shown to be uncorrelated with shape
for small isotropic variation at each landmark (Bookstein, 1991; Dry-
den and Mardia, 1998). Isotropic variation (independent, identically
distributed circular variation at each landmark) is the usual null-model
corresponding to pure noise. It is an important property of a statistical
method that pure noise does not induce an apparent “signal” (in this
case a correlation between size and shape). Real biological data, how-
ever, may deviate considerably from isotropy and hence CS usually is
not unrelated to shape.

The raw landmark coordinates do not only comprise information on
size and shape of the landmark configurations, but also on their po-
sition and orientation. Landmark coordinates hence are not directly
suitable for statistical analysis. The most common approach for separ-
ating shape from size and the “nuisance parameters” position and ori-
entation is Generalized Procrustes Analysis (Gower, 1975; Rohlf and
Slice, 1990). This method comprises three steps: translating all land-
mark configurations to the same centroid, scaling all configurations to
the same centroid size, and iteratively rotating all configurations until
the summed squared distances between the landmarks and their corres-
ponding sample average is a minimum (Fig. 2). The coordinates of the
resulting superimposed landmark configurations are called Procrustes
shape coordinates as they only contain information about the shape of
the configurations. (Note that scaling the configurations to unit CS re-
sembles the usual approaches to size correction but is not the actual
least-squares solution; it has thus been referred to as partial Procrustes
fitting. Also, CS is slightly modified in the course of tangent space pro-
jection. For more details see Rohlf and Slice 1990; Dryden and Mardia
1998; Rohlf 1999).

The standardization for position, scale, and orientation is based on
all landmarks. Alternatively, Procrustes analysis may be based on just
a subset of landmarks, for example when some landmarks are known to
vary in the sample or are subject to some treatment, whereas the other
landmarks are relatively stable (e.g., Bookstein et al. 1999). When the
registration is based on two landmarks only, the resulting shape co-
ordinates are called two-point shape coordinates or Bookstein shape
coordinates (Bookstein, 1991). Alternatives to the commonly used
least-squares oriented Procrustes analysis are maximum likelihood Pro-
crustes analysis (Theobald and Wuttke, 2006) and robust Procrustes
analysis based on medians instead of means (“Resistant Fit”; Slice
1996).

Shape space and form space

Mathematical spaces are widely used in the sciences to represent re-
lationships between complex objects (e.g., Stadler et al. 2001; Mitter-
oecker and Huttegger 2009). In a shape space the shapes of different
objects are represented by single points, related by some notion of dis-
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tance or proximity (as a measure of shape difference). The mathem-
atical properties of the shape space for landmark configurations, usu-
ally referred to as Kendall’s shape space, have been studied intensively
(e.g., Kendall 1984; Bookstein 1991, 1996; Goodall 1991; Small 1996;
Dryden and Mardia 1998; Rohlf 1999; Slice 2001). For p landmarks
in k dimensions, it is a nonlinear Riemannian manifold of dimension
pk —k — k(k —1)/2 — 1, which can be approximated locally by a Eu-
clidean space of the same dimension, a so-called tangent space. Mar-
cus et al. (2000) showed that the Euclidean approximation of shape
space is appropriate for most biological data sets. The metric on Kend-
all’s shape space is Procrustes distance, which is approximated by the
Euclidean distance between two sets of Procrustes shape coordinates
(square root of the summed squared distances between the correspond-
ing landmarks after Procrustes superimposition). Procrustes distance
is a measure of shape difference between two landmark configurations.
It is zero only if the configurations have the same shape, and larger than
zero otherwise. Standard multivariate methods, such as principal com-
ponent analysis, can thus be applied to Procrustes shape coordinates in
order to yield a low-dimensional representation (a so-called ordination)
of shape space.

Figure 3a shows the first two principal components for the Procrustes
shape coordinates of the landmark configurations in Fig. 2. Each point
in this plot corresponds to the shape of one landmark configuration;
the plot thus is a low-dimensional representation of shape space. The
principal component loadings (eigenvectors of the covariance matrix of
Procrustes shape coordinates) can be visualized by deformation grids
(“relative warps”; Bookstein 1991).

A space relating the forms of different objects is called form space or
size-and-shape space (or simply size-shape space). For landmark con-
figurations, form space can be constructed in two principal ways: first,
by standardizing the raw landmark configurations for position and ori-
entation as in the usual Procrustes analysis, but not standardizing for
size (e.g., Dryden and Mardia 1998, chapter 8), and second, by aug-
menting the Procrustes shape coordinates with the natural logarithm
of centroid size (In CS) as an additional variable (Mitteroecker et al.,
2004a). The log transformation guarantees that for isotropic landmark
variation the distribution in size-and-shape space is isotropic as well.
Either set of variables can be used for principal component analysis
(PCA) and other statistical analyses, and the Euclidean distance in these
spaces can be interpreted as a measure of form difference. Both ap-
proaches yield similar results for small variation in size and shape, but
they may differ if shape variation is large. We recommend construct-
ing form space by augmenting the Procrustes coordinates by In CS,
following Mitteroecker et al. (2004a), because size is explicitly repres-
ented by centroid size in this approach and the loadings or coefficients

~

Figure 2 — Procrustes superimposition consists of three steps: translation, scaling, and
rotation. As an example, take five configurations of four landmarks each. The raw land-
mark configurations in (a) are translated so that they all have the same centroid (b).
The centered configurations then are scaled to the same centroid size (c) and iteratively
rotated until the summed squared distances between the landmarks and their correspond-
ing sample average position is a minimum (d). The resulting landmark coordinates are
called Procrustes shape coordinates because variation in position, size, and orientation is
removed.
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Figure 3 — (a) The first two principal components (PCs) of the eight Procrustes shape coordinates for the landmark configurations shown in Fig. 2. This plot is a low-dimensional
representation of shape space, in which every point represents one shape. The actual shapes are drawn next to the corresponding points. (b) The first two PCs of the Procrustes shape
coordinates and the natural logarithm of centroid size (nine variables in total). This plot is a low-dimensional representation of form space: every form is represented by a single point.
The forms (scaled shapes) are drawn next to the corresponding points. Note that differences in size and allometric shape are closely aligned with PC 1 of form space (In CS has a loading
of 0.97 on the first eigenvector). The first PC thus accounts for a larger fraction of variance in form space than in shape space.

for size and shape, resulting from statistical methods such as PCA or
multivariate regression, can directly be compared and interpreted.

In Fig. 3b, the first two PCs of form space (Procrustes shape coordin-
ates plus In CS) are shown for the landmark configurations in Fig. 2.
This plot is a low-dimensional representation of form space. The forms
are drawn next to the corresponding points. Note that these configur-
ations are the same as those in Fig. 3a, but scaled to their original
size. See the Appendix for more details on the visualization of prin-
cipal components in form space.

Allometry

Allometry is the statistical association between size and shape (Mosi-
mann, 1970), or as formulated by (Gould, 1966, p. 587) with a stronger
emphasis on causality, “the study of size and its consequences”. Al-
lometry has been an influential concept in biology and morphometrics
since Huxley’s seminal treatise “Problems of Relative Growth” in 1932
(for reviews see, e.g., Gould 1966, 1977; Klingenberg 1998). Huxley’s
original version as well as its multivariate generalization by Jolicoeur
(1963) were based on multiplicative growth models for size measure-
ments such as bone lengths and other linear distances, areas, organ
weights or volumes. Allometry was thus expressed as a power func-
tion between traits, or equivalently, as a linear relationship between the
log-transformed traits. Logarithmic transformation of variables is also
common as a way of overall size correction and to account for different
units (e.g., Gould 1966; Bookstein et al. 1985; Marcus 1990).
Geometric morphometric studies of allometry require a methodolo-
gical approach that differs in several aspects from the classic allometry
studies. Procrustes shape coordinates are shape variables, not size vari-
ables, and they have no natural zero point (they are on interval scales,
not ratio scales) and hence cannot be log transformed. Allometry is
thus expressed as a — usually linear — function of the Procrustes shape
coordinates, estimated by multivariate regression of the shape coordin-
ates on centroid size or the logarithm of centroid size (Fig. 4; see also
Bookstein 1991; Dryden and Mardia 1998; Klingenberg 1998; Mon-
teiro 1999; Mitteroecker et al. 2004a). Note that in the classic approach
to allometry a constant linear slope between two size variables indic-
ates a constant size ratio, i.e., isometric size increase, whereas a con-
stant linear slope between a shape variable and a size variable indicates

allometric size increase. The vector of regression coeflicients resulting
from the multivariate regression of the shape coordinates on CS de-
scribes how shape changes in response to one unit size increase. This
coeflicient vector, or an arbitrary multiple of this vector, can be visual-
ized as a shape deformation.

Statistical significance tests for allometry, i.e., for the dependence
of shape on size, usually are multivariate tests based on all shape co-
ordinates (or a subset of shape coordinates). Since allometry is com-
puted as a multivariate regression of the shape coordinates on CS, sig-
nificance levels can be computed either by the usual multivariate para-
metric methods (e.g., MANOVA) or by resampling tests, which do not
require normally distributed variables (e.g., Good 2000; Mitteroecker
and Gunz 2009; Bookstein in press).

Allometric shape change

Allometric shape
5

average

Figure 4 — (a) The multivariate regression (shape regression) of the Procrustes shape
coordinates on In centroid size is visualized by a TPS deformation grid. It represents the
allometric shape change that corresponds to a size increase of 2 standard deviations. (b)
Scatter plot of allometric shape (scores along the vector of regression coefficients) versus
In CS. (c) Visualization of PC 1 in form space (Fig. 3b). The left grid corresponds to a
deformation from the average form to -1 standard deviation (s.d.) along PC 1 and the
right grid to a deformation from the average form to +1 s.d. along PC 1. Note that the
configurations change both in shape and size along this direction in form space. The
shape changes depicted in (a) and (c) are very similar.
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In many morphometric data sets, allometry is the most dominant
factor of shape and form variation within one group. Thus allometry
often is closely aligned with the first (within-group) principal compon-
ent in shape space and particularly in form space (Mitteroecker et al.
2004a; see also Fig. 4c). However, since this is not guaranteed to be
the case for all data sets, the actual multivariate regression of shape on
CS is the more direct and reliable method to determine allometry and
should be preferred over the first PC in shape space or form space.

Similarly, it has become common practice in geometric morphomet-
rics to plot principal component scores of shape versus CS in order
to assess or test for allometry. But this approach is likewise not ideal
because single principal components are not necessarily good repres-
entations of allometric shape, especially if the PCA is over multiple
groups. Instead of plotting PC scores, the score along the allometry
vector (vector of regression coefficients) can be plotted as an “allomet-
ric shape score” against CS or other variables (Fig. 4; see also the Ap-
pendix). Statistical tests for allometry, the dependence of shape on size,
should not be based on selected PCs, but should be multivariate tests
based on all shape coordinates or all principal components. Of course,
statistical tests for the dependence of form on size make no sense, since
form comprises both shape and size.

Ontogenetic allometry, the association between size and shape
across different age stages, often is used as an estimate of a population’s
ontogenetic trajectory (average growth pattern), especially when the in-
dividual calendar ages are not known. Static allometry, the association
between size and shape within a single age stage (usually in adults),
has often been used to explain the coevolution of size and shape (i.e.,
evolutionary allometry — the association between size and shape across
multiple species) and as a model for functional and behavioral adapta-
tions (e.g., Gould 1966, 1977; Lande 1979; Cheverud 1982; Klingen-
berg 1998; Marroig and Cheverud 2005; Schaefer et al. 2004; Gunz
2012).

In the classic concept of allometry, a trait is considered as negatively
allometric if it increases less in size than other traits or overall size do.
The trait’s relative size thus decreases with increasing overall size. A
trait with positive allometry, by contrast, increases more in size than
other traits do. For instance, head size, compared to body size, is neg-
atively allometric during human growth, whereas limb length is posit-
ively allometric. The variables used in geometric morphometrics are
the shape coordinates of the landmarks. Positive or negative allometry
cannot be inferred from single shape coordinates (they are shape vari-
ables, not size variables, and depend on the actual superimposition).
All shape coordinates must be visualized together in order to draw in-
ferences about the relative size increase or decrease of specific parts
described by the landmarks (see the example below).

Comparison of allometric relationships

When comparing two or more groups of individuals, the question might
arise how allometry differs across the groups. In recent years, a large
body of literature on the morphometric comparison of growth patterns
and ontogenetic allometries arose, advocating different morphometric
and statistical approaches (e.g., O’Higgins et al. 2001; Ponce de Leon
and Zollikofer 2001; Zelditch et al. 2003; Mitteroecker et al. 2004a,b,
2005; Gerber et al. 2007; Gerber 2011; Adams and Collyer 2009; Piras
et al. 2011; Gunz 2012; Collyer and Adams this issue; Sheets and
Zelditch this issue).

A simple and effective way to compare ontogenetic or static allo-
metry across groups is the visual comparison of deformation grids or
of series of reconstructed shapes representing group-specific allometry
(see Fig. 4 and the example below). Since these deformations can eas-
ily be described in qualitative morphological terms, the comparison of
deformations often leads to useful biological inferences.

Growth patterns and allometric relationships can be compared in
a more abstract way by assessing the geometry of the corresponding
vectors in shape space or form space. This can be particularly ef-
fective when comparing more than two trajectories (see the example
below), but the biological meaning of such quantifications, especially
of single parameters such as the angle between two trajectories, is not

62

always clear (Mitteroecker et al., 2004b, 2005; Huttegger and Mitter-
oecker, 2011). Ordinations such as principal component analysis or
between-group principal component analysis (Mitteroecker and Book-
stein, 2011) can be useful to explore ontogenetic and allometric trends
in different groups. Growth trajectories and allometric vectors can be
plotted within a principal component plot, either as linear vectors or
as nonlinear estimates such as local linear regressions (e.g., Bulygina
et al. 2006; Coquerelle et al. 2011). Alternatively, multiple allometric
vectors can directly be compared by principal component analysis (for
examples see the analysis below and Schaefer et al. 2004).

Parallel ontogenetic trajectories or allometry vectors in two or more
groups indicate that the groups have the same linear pattern of (relat-
ive) growth during the observed age periods, even if they differ in the
initial or in the adult morphology. If the average morphology of a spe-
cies differs from its ancestral average morphology mainly by the exten-
sion, truncation, or the developmental timing of an otherwise conserved
ontogenetic trajectory, the underlying evolutionary process is referred
to as allometric scaling or heterochrony (Gould, 1977; Alberch et al.,
1979; Klingenberg, 1998; Mitteroecker et al., 2004a, 2005; Gerber et
al., 2007).

Ontogenetic trajectories or allometry vectors differing in direction
indicate different growth patterns or ontogenetic allometries. Many
studies advocated the use of the angle between two trajectories in shape
space as a measure of difference in allometry or growth. While this can
be useful, one should be careful in interpreting angles without the start-
ing positions of the trajectories. For example, the angle alone is not
sufficient to distinguish between diverging, converging, or intersecting
trajectories. Furthermore, if two or more pairs of trajectories deviate
in different directions in shape space or form space, the angles may not
be comparable in a biologically meaningful way because they also de-
pend on the number and spatial distribution of landmarks (Huttegger
and Mitteroecker, 2011).

Example: Ontogenetic and static allometry of
male faces

In this empirical example we apply the methods described above to
assess allometry in human faces. A large number of studies investig-
ated how face shape leads to masculinity attributions and other social
inference, such as dominance, attractiveness, or trustworthiness (e.g.,
Zebrowitz and Montepare 2008; Schaefer et al. 2009; Little et al. 2011).
Head size and body height are positively correlated (e.g., Geraedts et
al. 2011), and body height has been found to play an important role
in studies of social inference and mate choice (Pawlowski et al., 2000;
Courtiol et al., 2010). Therefore, human facial allometry — aspects of
face shape reflecting body size — seems to be of central relevance to
these questions. However, it has received surprisingly little attention in
the literature.

Our sample comprises frontal photographs of 19 boys (age 6-11
years) and 25 men (age 17-33 years). A camera with a 200 mm lens
was positioned at eye height, 3.5 m away from the face. The heads were
adjusted according to the Frankfort Horizontal Plane, and a ruler was
placed next to one ear. This careful procedure is a prerequisite for the
reliable assessment of undistorted face shape and size (e.g., Schneider
et al. 2012).

On each image we digitized 35 anatomical landmarks and 34 semi-
landmarks to describe overall facial form (see Windhager et al. 2011
for details). Semilandmarks are points on smooth curves, for which the
exact location on the curve cannot be identified and hence is statistic-
ally estimated. We used the sliding landmark algorithm for this pur-
pose, which minimizes the bending energy, a measure of local shape
difference, between each individual and the sample average (Bookstein,
1997; Gunz et al., 2005; Gunz and Mitteroecker, this issue). This ap-
proach allows for the joint analysis of biologically homologous points
(anatomical landmarks) and curves (represented by geometrically cor-
responding semilandmarks).

After sliding the semilandmarks, all 44 landmark configurations
were superimposed by a Generalized Procrustes Analysis and sym-
metrized by averaging each landmark configuration with its relabeled
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Figure 5 — Scatterplot of the first two principal components (PC) of face shape. The individuals are labelled by their age. The red arrow represents ontogenetic allometry - the regression
of shape on In centroid size. The facial reconstructions correspond to PC 1 scores of -0.7, 0, and 0.7 and to PC 2 scores of -0.5, 0, and 0.5, respectively. They visualize the shape

differences associated with the first two PCs.

reflection (Mardia et al., 2000; Mitteroecker and Gunz, 2009). Fig-
ure 5 shows a scatterplot of the first two principal components (PC 1
and PC 2) of the resulting shape coordinates, accounting for 42% and
14% of total shape variation. The difference between juvenile and adult
face shape is the most dominant factor of shape variation and hence is
closely aligned with the first principal component of shape —a common
finding in ontogenetic samples. The red arrow represents the coeffi-
cient vector for the regression of shape on In centroid size, i.e., actual
ontogenetic allometry, which is likewise aligned along PC 1. The three
facial configurations visualizing shape differences along PC 1 show an
overall elongation of the midface and the lower face, a relative decrease
in eye size, as well as a thickening and lowering of the eyebrows. Shape
changes associated with PC 2 reflect the differences between more gra-
cile and more robust faces (Fig. 5) — a pattern known to correlate with
prenatal testosterone exposure (Fink et al., 2005; Meindl et al., 2012).

Figure 6 shows the first two principal components of facial form
(Procrustes shape coordinates augmented by In CS). They account for
79% and 6% of total form variation, respectively. The shape differ-
ences corresponding to PC 1 are similar to the first PC in shape space
(Fig. 5), but PC 1 in form space additionally comprises differences in
size. As in most other morphometric datasets, PC 1 in form space ac-
counts for a larger fraction of total variance and is even more closely
aligned with allometry (the red arrow) than PC 1 in shape space.

Because facial growth comprises changes in both shape and size,
facial form more closely reflects an individual’s age than facial shape.
The first PC in form space accounts for 71% of variance in age, whereas
PC 1 in shape space accounts for 42% only.

Figure 7a contrasts ontogenetic allometry (the regression of shape
on In CS in the full ontogenetic sample) with static allometry (the re-
gression of shape on In CS in adults). Ontogenetic allometry, which
is close to PC 1, reflects the relative size increase (positive allometry)
of the lower face and the resulting decrease of relative eye size (negat-
ive allometry). A permutation test shows that ontogenetic allometry is
statistically significant (Tab. 1). The pattern of static allometry is less
pronounced and the regression is not significant, indicating a weaker al-
lometric relationship within male adults and less variation in face size.

Behavioral biological theory primarily refers to sexual dimorphism
separately in body size and in face shape, but face size is itself negat-
ively allometric with respect to body size during human ontogeny (for
our data, In face CS and In body height have a correlation of 0.47 and
a slope of 0.14 in adults). We thus also regressed face shape on body
height, both in the ontogenetic sample and in adults only. Furthermore,
we regressed face shape on age in the two samples (Fig. 7b,c). All three
ontogenetic regressions are very similar, reflecting the high correlation

between face size, body height, and age during ontogeny (the pairwise
correlation coeflicients range from 0.84 to 0.92). The static regres-
sion of shape on body height to some degree resembles the ontogenetic
pattern, but the static regression on age seems to reflect another pro-
cess—aging as opposed to growth. Static and ontogenetic regressions
on body height as well as on age are all significant (Tab. 1).

Figure 8 shows a more abstract comparison of the three ontogen-
etic and the three static patterns of allometry. All six coefficient vec-
tors, standardized to unit length, are subjected to a principal compon-
ent analysis. The three ontogenetic regressions cluster together closely,
reflecting the similar deformation grids in Fig. 7, whereas the static re-
gressions are heterogeneous and differ from the ontogenetic ones.

Discussion

Size, shape, and form

In this paper we briefly reviewed the concepts of size, shape, and form,
and how they are estimated in geometric morphometrics. The shape
of a landmark configuration is what remains after position, orientation,
and size have been filtered out. In geometric morphometrics, the shape
parameters of a set of landmark configurations usually are estimated by
Generalized Procrustes Analysis, and the scale of the configurations is
quantified separately by centroid size.

Size and shape are classic geometric concepts, and it is a long-
standing tradition in morphometrics to analyze and interpret variation
in shape separately from variation in size. Yet every organism, and
every part of an organism, has a certain form, i.e., a certain size and
shape. Modern geometric morphometrics hence offers two modes of
analysis: an analysis of shape separately from size, and the joint ana-
lysis of size and shape in a single form space. But when should one
study the shape of objects, separately from size, and when their form?
Form is the more comprehensive description of an object than shape
alone; it should be used, for instance, in classification studies whenever
groups of organisms differ both in size and shape. Discrimination and

Table 1 - Explained variance and statistical significance for the ontogenetic and static
regressions of shape on the natural logarithm of centroid size (In CS), body height, and
age. The p-values were estimated by permutation tests using 1000 random permutations
and the explained variance as the test statistic.

ontogenetic regressions static regressions

p-value expl. var.  p-value expl. var.
InCS p<0.001 22.4% p=0.76 2.8%
body height  p<0.001 23.5% p<0.001  7.8%
age p<0.001 20.1% p<0.001  7.0%
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Figure 6 — Scatterplot of the first two principal components (PCs) of facial form (Procrustes shape coordinates augmented by In CS). The individuals are labelled by their age. The
redarrow represents ontogenetic allometry (allometric shape and size) - the regression of form on In CS. The facial reconstructions visualize the form differences associated with the
first two PCs and correspond to PC 1 scores of 3.44, 3.63, and 3.82 and to PC 2 scores of 0.78, 0.84, and 0.90, respectively.

classification based on form usually is more successful than based on
shape alone (e.g., Mitteroecker and Bookstein 2011). Likewise, when
predicting a variable, such as age in our example on facial morphology,
form is the better predictor than shape whenever size is related to the
variable as well. In most studies of growth and development, changes
both in size and shape may be of scientific relevance and can be ana-
lyzed jointly.

When variation in shape is explained differently from variation in
size, or when size differences are used as an explanation of shape dif-
ferences (such as in studies of allometry), shape and size should be
quantified and analyzed separately. In some studies, particularly on or-
ganisms with indeterminate growth, both geometric size and allomet-
ric shape might intentionally be neglected and removed from the data.
When the size of the measured objects is not well preserved (e.g., be-
cause of unstandardized photographs), shape should of course be ana-
lyzed separately from size.

In general, it is a useful exploratory approach to contrast ordinations
in shape space to that in form space. For example, ontogenetic traject-
ories that overlap or are parallel in shape space but differ in direction
in form space indicate a dissociation of size and shape during ontogeny
(e.g., Mitteroecker et al. 2004a, 2005; Gerber et al. 2007). An a priori
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Figure 7 — Visualization of the ontogenetic and static shape regressions. (a) Facial allo-
metry estimated via regressions of face shape on In CS in the full ontogenetic sample
(ontogenetic allometry) and in the subsample of adults (static allometry). The displayed
grids are deformations from the mean shape to shapes corresponding to -2 standard de-
viations (s.d.) and +2 s.d. of centroid size. (b) Regression of face shape on body height in
the full sample and in adults only. (c) Regression of face shape on age in the full sample
and in adults only.
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limitation of a morphometric analysis to either shape or size should be
justified explicitly.

Geometric morphometrics offers powerful techniques for the visu-
alization of both shape differences and form differences. Deforma-
tion grids and series of reconstructed shapes or forms can easily be
interpreted within a biological context (e.g., Bookstein 1991). Ordin-
ations and other multivariate statistical analyses of high-dimensional
shape spaces or form spaces can be useful when comparing relation-
ships between multiple groups, but meaningful biological interpreta-
tions of such analyses are more difficult (e.g., Mitteroecker et al. 2004b,
2005; Huttegger and Mitteroecker 2011; Bookstein in press). A care-
ful ordination analysis, consilient with a biological explanation, can be
more convincing than lists of geometric parameters and significance
tests (McCloskey and Ziliak, 2009; Bookstein, in press). Furthermore,
in contrast to deformation grids, most multivariate analyses and geo-
metric parameters in shape or form space do not account for the spa-
tial relationship among landmarks (they ignore the mean shape), even
though the information is present in the shape coordinates. For ex-
ample, all shape coordinates contribute equally to multivariate statist-
ics such as covariance matrices or the angle between two trajectories,
regardless of whether the landmarks are far apart or whether they al-
most have the same position (e.g., Mitteroecker 2009; Huttegger and

Height_S

Height_O

PC2

PC1

Figure 8 — Principal component analysis of the six shape regression vectors (stand-
ardized to the same length) shown in Fig. 7. The ontogenetic regressions are very
similar and hence point into a similar direction in this ordination, whereas the three
static regressions differ considerably, with the vector of the static regression on
body heigh located closest to the ontogenetic ones.
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Mitteroecker 2011). Further theoretical and statistical developments
may lead to more powerful morphometric analyses.

Facial allometry

We have applied geometric morphometric methods to study ontogen-
etic and static allometry in human faces. Despite its obvious import-
ance for studies in face perception and evolutionary psychology, facial
allometry has received little attention in the corresponding literature.
The ontogenetic relationship between body size, face size, and face
shape is no big surprise since they all change considerably with age.
But our results further reveal shape cues to body size in the adult male
face, partly resembling ontogenetic allometry. Face size, by contrast,
is less clearly and not significantly related to face shape in our adult
sample.

This has far reaching consequences for several lines of face research.
Shorter men on average have more childlike facial features than taller
men, which in turn affect trait attributions and social stereotyping
(Zebrowitz and Montepare, 2008). Facial allometry might thus be an
important confounding factor in studies of facial masculinity, domin-
ance, and the like.

We further found age-related shape changes in the adult male face,
resembling the qualitative descriptions of Albert et al. (2007): the face
becomes wide relative to its length and the lips become thinner, even
after correcting for body weight. These are features typically associ-
ated with and perceived as mature and male, even in inanimate objects
(Windhager et al., 2008).

Effects of aging on face shape differ from the subadult growth pat-
tern, even in our sample with an adult age range from 17 to only 33
years. This may confound estimates of ontogenetic allometry and lin-
ear growth trajectories when pooling subadult individuals with adults
of a large age range. ©

Appendix

Here we give some details about the visualization of regression and principal com-
ponent analysis in shape space and in form space. To our knowledge, the visualization
in form space has not been published before.

Let s; be a vector of the pk shape coordinates of the ith individual, where p is the
number of landmarks in k dimensions, and ¢ = 1,...,n. Let further a be a vector
of pk regression coeflicients (resulting, for example, from a regression of the shape
coordinates on CS in order to estimate allometry) or a vector of principal component
loadings in shape space. The coefficient vector a can be visualized as a deformation
grid between a reference shape, usually the mean shape s;, and s; + fa, the reference
shape plus a convenient multiple f of the coefficient vector a. Itis effective to contrast
two deformations, one from the reference to s; — fa and one from the reference to
S; + fa (such as in Fig. 7), or to present a series of reconstructed shapes, such as
S; — fa, 8;, and 5; + fa (Fig. 5). Scores along the vector a, that is, a variable
reflecting allometric shape (Fig. 4), can be computed as the linear combination a’s; .
When a is scaled to unit length, the linear combination is equal to an orthogonal
projection on the coefficient vector.

Vectors in form space, resulting from a regression of form on some variable or
from PCA in form space, can be visualized as form deformations or series of recon-
structed forms, comprising differences in both size and shape. When form space is
constructed based on the pk coordinates of the centered and rotated — but not scaled —
landmark configurations, the visualization can proceed as described above for shape,
but now a might induce a change in size.

When form space is based instead on the shape coordinates (centered, scaled, and
rotated configurations) together with the natural logarithm of centroid size (pk + 1
variables in total), the visualization is slightly more complex. A vector b of regres-
sion coefficients or of principal component loadings in form space consists of pk
coefficients or loadings for the Procrustes shape coordinates and one for In CS. Let
b1 ...pk denote the elements of b corresponding to the shape coordinates and b4 1
the element corresponding to In CS. The visualization of b must be based on a ref-

erence form, which usually is the product S;e'2Pi that is, the mean shape s; scaled
by the mean size Inp;, where p; is the centroid size of the ith individual. Note that
when size is measured by In CS, the average shape must be scaled by the exponential
function of the average In CS, which is equal to the geometric mean of CS. The target
of the deformation is (87 + fb1.. _pk)el“p' +FPrit1 je., the shape 5; + fbi. pk
scaled by Inp; 4 fbpk41. For the visualization of form differences the absolute size
usually does not matter, just the relative size difference associated with some shape
difference is presented. The reference and the target forms can thus be rescaled by the
same size factor and the terms above can be simplified to s; for the reference form
and to (87 + fb1i...pk )eber‘ for the target form.

In order to visualize allometry as a shape change together with the corresponding
size change, one can add the vector of slopes resulting from the regression of the

shape coordinates on In CS to a reference form, and increase the scale of this reference
form (measured as In CS) by one unit. This is equivalent to regressing form (shape
coordinates plus In CS) on In CS and to follow the procedure outlined above (the slope
for In CS would be 1). The same regression of form on In CS (i.e., the regression
slopes of shape on In CS plus one element containing 1) can be used to project the
vector of allometry (vector of regression slopes) into a PCA plot of form space (e.g.,
such as in Fig. 6).
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