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Abstract

Phylogenetic Principal Components Analysis (pPCA) is a recently proposed method for ordinating
multivariate data in a way that takes into account the phylogenetic non-independence among species
means. We review this method in terms of geometric morphometric shape analysis and compare
its properties to ordinary principal components analysis (PCA). We find that pPCA produces a
shape space that preserves the Procrustes distances between objects, that allows shape models to
be constructed, and that produces scores that can be used as shape variables for most purposes.
Unlike ordinary PCA scores, however, the scores on pPC axes are correlated with one another and
their variances do not correspond to the eigenvalues of the phylogenetically corrected axes. The
pPC axes are oriented by the non-phylogenetic component of shape variation, but the positioning
of the scores in the space retains phylogenetic covariance making the visual information presented
in plots a hybrid of non-phylogenetic and phylogenetic. Presuming that all pPCA scores are used
as shape variables, there is no difference between them and PCA scores for the construction of
distance-based trees (such as UPGMA), for morphological disparity, or for ordinary multivariate
statistical analyses (so long as the algorithms are suitable for correlated variables). pPCA scores
yield different trait-based trees (such as maximum likelihood trees for continuous traits) because the
scores are correlated and because the pPC axes differ from PC axes. pPCA eigenvalues represent
the residual shape variance once the phylogenetic covariance has been removed (though there are
scaling issues), and as such they provide information on covariance that is independent of phylogeny.
Tests for modularity on pPCA eigenvalues will therefore yield different results than ordinary PCA
eigenvalues. pPCA can be considered another tool in the kit of geometric morphometrics, but one
whose properties are more difficult to interpret than ordinary PCA.

Introduction
Principal Component Analysis (PCA) is an important step in geomet-
ric morphometrics, both in its own right as a tool to understand overall
patterns of shape variation and as a means for producing mathematic-
ally uncorrelated shape variables to use in subsequent analyses (Book-
stein, 1997a; Dryden andMardia, 1998). Even though PCA shape vari-
ables are mathematically uncorrelated, they may be phylogenetically
correlated when shape is sampled in populations or species that are
phylogenetically structured. Techniques for analyzing phylogenetically
structured data exist, such as mapping shape data onto phylogenies or
removing phylogenetic correlations from data, but confusion remains
about what these techniques do and when they should be applied. The
confusion is compounded by the term “phylogenetic comparativemeth-
ods”, which is applied both to techniques that highlight phylogenetic
changes and techniques that remove the effects of phylogeny. Stud-
ies of evolution, adaptation, and systematics benefit from techniques
that incorporate phylogeny, while studies of correlations that origin-
ate from physical processes or other non-adaptive factors benefit from
techniques that remove phylogeny.

Phylogenetic principal components analysis (pPCA) is a method re-
cently proposed for controlling for phylogenetic covariance to produce
a PCA-like ordination (Revell, 2009). The major axes of pPCA shape
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space are not the major axes of shape variation, as in ordinary PCA,
but rather the major axes of the non-phylogenetic residual variation
once phylogenetic covariation has been removed. Note that pPCA is
an ordination that attempts to correct for shared phylogenetic history in
constructing the axes, which is very different frommethods that simply
project phylogenetic trees into morphospace and which are referred to
by some as ”phylogenetic principal components analysis” (e.g., Rohlf
2002; Polly 2008; Klingenberg and Gidaszewski 2010). pPCA can
ostensibly be used to study shape variation that arises from underly-
ing processes that are common to all taxa, such as allometric scaling
in quadrupedal animals between body mass and limb structure. Be-
cause pPCA has rapidly gained popularity in evolutionary studies (e.g.,
Bergmann and Berk 2012; Kohlsdorf and Navas 2012), we feel it is
timely to review its properties in the context of geometric morphomet-
rics. As anticipated by Revell (2009), we find that phylogenetic correl-
ation is not removed by pPCA, and we also find the pPCA scores are
correlated between axes and that the variance of scores on pPC axes
does not necessarily decrease with sequentially higher axes.

To demonstrate these findings, we critically compare pPCA with or-
dinary PCA in the context of geometric morphometrics. As a preface,
we review PCA, including the essential properties of eigenvectors, ei-
genvalues, and scores, to provide a clear point of comparison for how
pPCA differs. We show with simulated and real examples that pPCA
scores have several underappreciated properties, most importantly that
they are a rigid rotation of PCA scores and thus conserve between-
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specimen distances when measured in the full multivariate space and
that the scores on different pPCA axes can be highly correlated with one
another. We evaluate how these properties impact some of the standard
multivariate analyses used in geometric morphometrics.

A review of principal components analysis
Before discussing pPCA, it is useful to review the technical proper-
ties and uses of ordinary PCA in geometric morphometrics. PCA is
an ordination technique that is frequently used in multivariate morpho-
metrics. In geometric morphometrics, PCA is one of two preferred
methods for producing shape variables that are uncorrelated with one
another and whose dimensionality is appropriate for further statistical
analysis, the other method being partial warps analysis (Rohlf, 1993;
Dryden and Mardia, 1998; Zelditch et al., 2004). Relative Warps Ana-
lysis (Rohlf, 1993) is a PCA of partial warp scores and is identical to
ordinary shape PCA when the uniform component of shape is included
andwhen the principal warps are weighted equally. PCA space is there-
fore the standard “shape space” used to show similarity and difference
in shape among objects, and it is often used to model evolutionary and
developmental shape transformations (e.g., Mitteroecker et al. 2004;
Polly 2004; Adams and Collyer 2009). Principal component axes (PCs)
function as shape variables, the first of which represents the major axis
of variation among the objects. Successive PCs are orthogonal, or at
right angles, to the first PC and to each other along the successively
greatest axes of variation among the objects. Because the first two or
three axes often represent most of the variation in the data set, plots of
objects on these axes show most of the overall similarity and difference
in shape. Many variations of PCA exist, and readers are referred to
Jollife (2002) for a comprehensive description. Here we discuss prop-
erties of the simplest form of PCA where the ordination of objects is
mean centered and based on the covariancematrix of the variables. The
features of PCA that are most relevant to our discussion are the covari-
ance matrix (P), the eigenvectors (U) and eigenvalues (Σ) of P, and
the scores (S) of the objects on the eigenvectors.

Figure 1 – Example showing the conservation of variance in PCA using a covariance matrix.
(a) Data plotted in trait space, where the two clades are separated by both traits. (b) Data
plotted in principal components space, where PC 1 separates the two clades. Note that
for two traits, there are only two principal components so no other dimensions exist in
the trait or PC spaces than those shown.

P is a symmetrical m × m matrix of the covariances between the m
traits in the off-diagonal elements and the variances in the diagonal ele-
ments. In geometric morphometrics, the traits that go into this matrix
are the mean-centered landmark coordinates of the objects after Pro-
crustes superimposition. The trace of P, which is the sum of its di-
agonal elements, is self-evidently equal to the sum of the variances of
each of the superimposed landmark coordinates. For later reference,
note that P is calculated as:

P = (n − 1)-1(X − mean[X])> · (X − mean[X]) (1)

where n is the number of taxa and X is a matrix of trait values. Note
that the rank of this matrix is less than m, the number of traits, be-
causeX is amatrix of Procrustes superimposed coordinates where size,
translation, and rotation have been removed, thus removing four de-
grees of freedom from two-dimensional landmark data (2m − 4) and

seven for three-dimensional data (3m − 7) Rohlf and Slice (1990);
Bookstein (1997a). The Procrustes coordinates are thus said to be
“collinear” and P is said to be “singular” because of the loss of
these degrees of freedom. The Procrustes coordinates are thus non-
independent, violating the assumptions of many statistical analyses.
The relevance to PCA is that the loss of degrees of freedom results
in fewer PC axes than there are landmark coordinates and that PCA
scores provide uncorrelated shape variables that can be used in place
of the correlated Procrustes coordinates.

PC axes are defined by the eigenvectors of P and the variance of
the objects on each of the axes is given by the eigenvalues. The term
“objects” refers to the individual specimens or taxa that are being ana-
lyzed or, more technically, the variables used to measure the objects. In
geometric morphometrics, the objects are represented by constellations
of Procrustes superimposed points. The elements of the eigenvectors
are the cosines of the angles (in radians) of each vector from each of
the original variables (the Procrustes residuals in the case of geometric
morphometrics). Because P is singular, U and Σ are usually calcu-
lated using the singular-value decomposition algorithm (SVD) where
P = U ·Σ ·V> (e.g., Dryden and Mardia 1998). In some implement-
ations of SVD the matrix Σ is a diagonal matrix of singular values,
which are the square-roots of the eigenvalues, whereas in others Σ is
returned as the eigenvalues themselves (our notation follows the latter).
The scores, S, are the values of the objects on the PC axes, or their co-
ordinates in shape space. S is calculated by projecting the Procrustes
residuals into the principal component space by multiplying the Pro-
crustes residuals by the eigenvectors:

S = (X − mean[X]) · U (2)

where X is the matrix of the Procrustes superimposed coordinates,
mean[X] is the consensus shape or mean of the Procrustes coordin-
ates. Because U contains the cosines of the angles between the ori-
ginal coordinates and the eigenvectors, Equation 2 describes the trans-
lation of the original data to the mean and rotation to its major axes of
variation. Importantly for our later discussion, the eigenvectors can be
thought of as describing the orientation of the objects in PC space and
the eigenvalues can be thought of as their scaling in that space.

For the geometry of shape to be preserved in the PCA shape space,
the variance and proportionality of the x, y, and z landmark coordin-
ates must be maintained, as must the distances between the objects in
the space (Rohlf, 1993; Dryden and Mardia, 1998). PCA based on a
covariance matrix has such properties: the variances of the scores on
the PC axes equal the corresponding eigenvalues, and so the sum of the
variances of the scores equals the sum of the eigenvalues. Furthermore,
because the scores are the result of a rigid rotation, the total variance
of the original data set is preserved in the scores. In other words, the
sum of the variances of the scores equals not only the sum of the ei-
genvalues, but also the sum of the variances of the original Procrustes
coordinates and the sum of the diagonal of P. Recall that a variance
is the sum of squared deviations of objects from their mean divided
by the number of objects. A Euclidean distance is the square root of
the sum of squared differences of one object to another. The conserva-
tion of variance in PCA therefore also conserves the distances between
objects in shape space.

Table 1 – Comparison of variances in original traits with the diagonal elements in their
covariance matrix (P), the eigenvalues of P, and the variance of the PCA scores based
on P. The original trait variances and distances are preserved when the PCA is based on
the covariance matrix. Fig. 1 shows ordinations associated with these data.

Variance of traits Eigenvalues of P
Trait A 0.123 Eigenvalue 1 0.320
Trait B 0.217 Eigenvalue 2 0.020
Total 0.340 Total 0.340

Trace of P Variance scores of P
Trait A 0.123 PC 1 0.320
Trait B 0.217 PC 2 0.020
Total 0.340 Total 0.340
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Phylogenetic PCA

Figure 2 – A comparison of standard PCA and phylogenetic PCA using simulated evolution of eight triangles. (a) The apices of the triangles were simulated with covariances shown here.
The grey triangles show the shape variation along the first eigenvector of the corresponding covariance matrix. (b) Triangles were simulated on the tree shown here using Brownian
motion and the covariance matrix derived from a. After generating the eight tip shapes (shown in grey), ancestral node shapes were reconstructed on the tree (also shown in grey). (c)
Ordinary PCA of the eight tip taxa from b. The phylogenetic tree has been projected into the PC space by locating the points in the space that correspond to the reconstructed ancestral
node shapes. The shape variation described by each PC axis is shown as a series of small grey triangles along the two margins. (d) Phylogenetic PCA of the same data using the same
conventions as in c. Note that shape space for triangles has only two dimensions (2K − 4 = 6 − 4 = 2) so the axes shown in c and d are the full shape space.

The example in Fig. 1 demonstrates the conservation of variance and
inter-specimen distances in PCA. Randomly generated bivariate data
for eight objects are plotted in trait space in Fig. 1a and in principal
components space in Fig. 1b. One can see that the distances between
the objects are preserved in the PC space, having been translated and
rotated relative to the trait space. One can also see that in the PC space
the objects are oriented along their major axis of variation. The sum
of the variances of Traits A and B is the total variance in the data set,
which is preserved in the sum of the variance of the scores on PC 1
and PC 2 and in the eigenvalues (Tab. 1). The mean distance between
objects in the original trait space and in PC space is 0.730 units in both
cases. Note that the PC space is mean centered and trait space is not.

Phylogenetic structure impacts PCA ordination, which is easily seen
in the simulated example in Fig. 2. We simulated the evolution of
triangles on a phylogenetic tree consisting of eight tip taxa in two dis-
tantly separated clades. We used triangles in this example because,
after Procrustes superimposition, which removes 4 degrees of freedom
for scaling, translation, and rotation, the shape space for triangles has
only two dimensions allowing the full morphospace to be represented
by just two principal components (Rohlf, 1999). We evolved the tri-
angles on the tree (Fig. 2b) using Brownian motion and an arbitrarily
defined population covariance (Fig. 2a). The major axis of this “gener-
ating” covariance is shown as a series of grey triangles in Fig. 2a. The
eight simulated triangles and ancestral shapes reconstructed from them
using a Brownian motion model (Martins and Hansen, 1997; Rohlf,
2001) are shown in Fig. 2b. The principal components of the triangles
are shown in Fig. 2c, with the tree projected into the resulting shape
space based on the node reconstructions (Rohlf, 2002; Polly, 2008).
The shape variation described by each of the two PCs is shown as a
series of grey triangles along the margins of the plot. The two clades

form separate clusters in the plot, separated along PC 1, which is un-
surprising because the branches separating the two clades are long and
the greatest evolutionary differences are expected to accumulate along
the longest branches. In fact, it is typical with data containing two or
more clades that the first PC separates one group from the rest, the
second PC separates another group, the third PC yet another, and etc.
(in cases where there are more than two groups and two PCs). Also
unsurprisingly, the shape variation associated with the first PC is sim-
ilar to the generating covariance because the evolution along the two
long branches separating the clades was simulated using that covari-
ance structure. The structure of PC 1 is thus highly phylogenetic, but
the shape variation along the axis is closely related to the underlying
covariance used to simulate the data.

The code used to simulate these data, to perform the ancestral re-
constructions, and to project the tree into shape space, as well as a
complete description of the algorithms used, is available in the Geo-
metric Morphometrics for Mathematica (v. 9.0) and the Phylogenetics
for Mathematica (v. 2.1) packages (Polly, 2012a,b).

Properties of phylogenetic principal compon-
ents analysis
Phylogenetic principal components analysis (pPCA) is similar to PCA,
except that the covariance matrix is inversely weighted by phylogeny
and the space is centered on the estimated phenotype of the root node
of the tree instead of the mean of the tips (Revell, 2009). A key com-
ponent of pPCA is the phylogenetic covariance matrix (C), which is a
symmetrical n × n matrix, where n is the number of tips on the tree,
with off-diagonal elements containing the branch length shared by taxa
and the diagonal elements containing the total branch length between
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each tip and the root of the tree (Martins and Hansen, 1997; Rohlf,
2001; Revell, 2009). Under a Brownian motion model of evolution,
this matrix describes the expected phenotypic variance and covariance
among tip taxa due to common descent (Martins and Hansen, 1997;
Felsenstein, 2003). Branch lengths can be given in any units, but, as
elaborated below, the choice of units affects the eigenvalues of C. In
terms of geometric morphometrics, C describes the expected similar-
ity in shape due to recency of common ancestry.

Following Revell (2009), the first step in pPCA is to estimate the
ancestral node values of the traits on the tree:

a = [(1> · C-1 · 1)-1 · 1> · C-1 · X]> (3)

which gives a vector of estimated ancestral values for the n traits (X)
at the root node of the tree, where 1 is a vector of ones whose length is
equal to C and X is a matrix of Procrustes superimposed coordinates.
This method for estimating ancestral node values is the same as the
generalized linear model method (Martins and Hansen, 1997; Rohlf,
2001), and the ancestral node estimates are identical tomaximum likeli-
hood (Schluter et al., 1997) and squared-change parsimony (Maddison,
1991) estimates when the traits have evolved under a Brownian motion
model. As Revell pointed out, methods that make different assumptions
about evolution can be used in pPCA if so desired. The root node recon-
struction is used to center the pPCA. Rohlf (1998) warned of distortions
that could arise from the non-Euclidean curvature of shape space when
values other than the arithmetic mean are used to center ordinations. In
practice, the risk of such distortion is minimal because shape variation
in biological data sets is usually small (Rohlf, 2003) and because the
ancestral node reconstruction is merely a weighted mean and not rad-
ically different from the arithmetic mean, so we will not consider this
issue further.

The next step in pPCA is to estimate the evolutionary covariance
matrix for the traits (PP) (Revell, 2009). This matrix is similar to the
ordinary trait covariance matrix (P) except that taxa are weighted by
their shared ancestry and traits are centered on the ancestral node values
instead of their mean:

PP = (n − 1)-1 · (X − a>)> · C-1 · (X − a>) (4)

where n is the sample size and 1 is a scalar. Note that the calcula-
tion of PP is identical to the calculation of P (Equation 1) except that
the root ancestor is substituted for the mean and the inverse of C is
used to weight the calculation. Because the elements of C are shared
branch lengths, those taxa that share the longest branch lengths have
the highest phylogenetic covariances are down-weighted most heav-
ily by C’s inverse. As with PCA, eigenvalues (ΣP) and eigenvectors
(UP) are extracted fromPP using singular value decomposition. Note
neither the sum of the diagonal elements of PP nor the sum of its ei-
genvalues equal the sum of the variances in the original traits because
of the weighting by the inverse of C.

The final step of pPCA is to project the tip taxa into the space defined
by the eigenvectors of PP (Revell, 2009). The pPCA scores are calcu-
lated as

SP = (X − a) · UP. (5)

Note the similarity and difference between Equations 2 and 5. In-
stead of being mean centered as in Equation 2, the traitsX are centered
on the root node a, and instead of being rotated to the eigenvectors
of the covariance matrix P they are rotated to the eigenvectors of the
phylogenetically weighted covariance matrix PP. Equation 5 is thus a
rigid rotation of X around a just as Equation 2 is a rigid rotation of X
around mean[X]. The phylogenetic scores SP are not rescaled by the
eigenvalues ΣP, nor can they be without also changing their relative
positions within the shape space. Revell (2009) rightly notes that the
projection of the tip data X into the space defined by the eigenvectors
makes pPCA different than an ordinary PCA of phylogenetically inde-
pendent contrasts (Ackerly and Donoghue, 1998). The goal of pPCA
is to ordinate the n tips rather than the n − 1 contrasts, even though the
goal of both is to provide a phylogenetically corrected ordination.

The PCA and pPCA ordinations are compared in Fig. 22c-d using
the simulated triangle data set. In this example the two ordinations

are visibly different (indeed, these particular simulated data were used
because of their especially strong difference). One difference is the
orientation of the objects within the space. PC 1 separates the two
clades in the PCA plot because the greatest axis of phenotypic variation
runs between the clades, but pPC 1 does not substantially separate the
two groups because of the inverse weighting ofC reduces the influence
of shared differences of taxa, an effect that is most pronounced in the
longest branches. Note, however, that clades 1 and 2 are just as distinct
in the pPCA as in the PCA because the shape data themselves are not
adjusted before projecting them onto the pPCA axes. All of the shape
variation is therefore represented in pPCA because the calculation of
scores is a rigid rotation of the original, ensuring that all the shape
information is retained in both analyses. The plots differ, minorly, in
where their axes are centered. In PCA the center of the axes is at the
arithmetic mean of the tips (which happens to coincidentally be near
Node 0 in this example), but in pPCA the center is precisely at the
position of the basal node of the tree. The code for doing the pPCA
ordination and projecting the phylogenetic tree into it is available in
the Geometric Morphometrics for Mathematica package (version 9.0)
(Polly, 2012a).

Table 2 – Trait variances in pPCA are not conserved. The sum of the variances of the tip
traits does not equal the variances in the evolutionary covariance matrix PP because of
the adjustment for phylogenetic relationships. The sum of the variances of the pPCA axes,
the eigenvalues, equals the variance in PP but not the variance of the original traits.
When the tips are projected into the pPCA space the sum of their variances is equal to
the variance in the original data, but not the sum of the pPCA eigenvalues. Note that the
variance of the scores on pPC 2 is greater their variance on pPC 1. The data summarized
here are shown in Fig. 2.

Variance of
Procrustes coordinates
Apex 1x 0.055
Apex 1y 0.049
Apex 2x 0.016
Apex 2y 0.055
Apex 3x 0.047
Apex 3y 0.029
Total 0.251

Eigenvalues of P Eigenvalues of PP
Eigenvalue 1 0.182 Eigenvalue 1 0.008
Eigenvalue 2 0.069 Eigenvalue 2 0.004
Total 0.251 Total 0.011

Variance of scores of P Variance of scores of PP
PC 1 0.182 pPC 1 0.096
PC 2 0.069 pPC 2 0.155
Total 0.251 Total 0.251

An important property of pPCA is that, even though the pPC axes
are orthogonal and they are numbered in descending order of their ei-
genvalues, the shape scores on the pPC axes are correlated and the pro-
portion of the shape variance explained by them is not in descending
order. In this example, the correlation between the pPC 1 and pPC 2
scores is 0.39 and the variance of the scores on pPC 2 is greater than
on pPC 1 (Tab. 2). These unusual properties arise from the fact that
phylogenetically adjusted trait data are used to construct the pPCA ei-
genvectors but unadjusted trait data are projected into them. We discuss
these issues in detail in the following sections.

pPCA produces phylogenetically corrected eigenvalues
and eigenvectors
The phylogenetic correction in pPCA adjusts the covariance matrix to
remove the expected phylogenetic correlation among the traits (Rev-
ell, 2009), which it does very well. The effect of this adjustment
is as though the tip data were adjusted to be no more divergent or
correlated than if they had been drawn from a star phylogeny. The
eigenvectors and eigenvalues of pPC 1 thus the major axis of non-
phylogenetic variation, pPC 2 is the orthogonal major axis to the re-
sidual non-phylogenetic variation, and so on. The more phylogenetic
structure there is among the tips, the more PCA and pPCA will differ.
If the tips are drawn from a star phylogeny, the two ordinations will be
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Figure 3 – Results of five simulations showing how phylogenetic structure a�ects PCA
and pPCA ordinations. The evolution of two traits were simulated on the trees in the
left column using a Brownian motion model. The PCA ordination of each simulated data
set is shown in the center column and the pPCA ordination in the right column. When
clades are separated by long branches (a) then the clades tend to be more di�erent than
their members and PC 1 tends to separate groups. pPCA adjusts for the phylogenetic
separation and so pPC 1 di�ers substantially from PC 1. When the clades have shorter
branches separating them than they have between members of a clade, then the between
group di�erences tend to be small (b-d) and PC 1 is driven by non-phylogenetic variation
and so does not di�er substantially from pPC 1. As the tree topology approaches a star
phylogeny (b-d) the PCA and pPCA ordinations become identical.

identical; and the farther the phylogeny is from a star, the more the two
ordinations will differ (Fig. 3).

Note that the magnitudes of the pPCA eigenvalues depend on the
units used for branch lengths and thus cannot be viewed as a simple
proportion of the original shape variance. In our example, the sum of
the eigenvalues is 0.011, but if the branch lengths are multiplied by 10
(e.g., if they were scaled in hundreds of thousands of years instead of
millions of years) the sum of the eigenvalues declines to 0.001. In or-
der for the pPCA eigenvalues to be proportional to the original shape
variance, the branch lengths would have to be converted to phenotypic
variance units so they would be on the same scale as the data (Rohlf,
2001; Felsenstein, 2003). In practice, the branch length units do not
affect the pPCA ordination because the scale does not affect the ori-
entation of the eigenvectors and the scores are not rescaled to have the
same variance as the eigenvalues.

The variance of scores in pPCA space do not equal the
eigenvalues of the pPCA vectors
Note that neither the eigenvalues (ΣP) nor the evolutionary covariance
matrix (PP) are used to produce the scores (Equation 5); only the ei-
genvectors of PP have an actual effect on the ordination. The eigen-
vectors describe the direction of the pPCA axes, and thus the orientation
of the data, but not their variance or scale. pPCA thus affects only the
orientation of the tips in the shape space, it does not change their over-
all variance or the distances among them, which is why Revell (2009)
cautioned that subsequent statistical analyses still require phylogenetic
correction.

The issue of variance and scale in pPCA space is complicated and
worth exploring. Tab. 2 summarizes the variance in the traits, evolu-

tionary covariance matrix, eigenvalues, and scores using the same ex-
ample data from Fig. 2. The total variance in the two traits is the same
as reported before, but the sum of the diagonals of the evolutionary co-
variance matrix PP is different because the trait variances have been
adjusted to remove the phylogenetic covariances. The eigenvalues are
calculated from PP so their sum is equal to the trace of PP and rep-
resents the total amount of variance among the taxa after adjusting for
their phylogenetic covariances. In other words, the sum of the eigen-
values is the variance expected if the taxa had been drawn from a star
phylogeny.

Importantly, the sum of the variance of the pPCA scores is identical
to the sum of the variance of the traits, and to the sum of the vari-
ances of ordinary PCA scores (Tab. 2). The variance is conserved in
pPCA scores because the tips are rigidly rotated into the pPCA space
without consideration of the phylogenetically corrected variance. In
other words, the orientation of pPCA axes has been adjusted for the
effects of phylogeny, but the spacing of the taxa has not. The conser-
vation of variance in the scores has several effects. First, the distances
between tips are identical in the original trait space, PCA space, and
pPCA space. We already reported that the average distance between
tips in the first two of these spaces was 0.730, and so is their average
distance in pPCA space. pPCA thus preserves the distance between ob-
jects and their proportionality in exactly the same way that PCA does,
meaning that many kinds of analysis, such as morphological disparity,
will be unaffected by the choice of ordination technique (see examples
below).

Equally importantly, the sum of the variance of the pPCA scores is
not the same as the sum of the eigenvalues (Tab. 2). The direction of
the ordination of the tips has been adjusted for phylogenetic covariance,
but their variance and distances have not. Thus, the distances between
tips in the pPCA ordination is just as much affected by phylogeny as in
PCA. For this reason, Revell (2009) cautioned that phylogenetic stat-
istics should be used to analyze pPCA scores in cases where one wants
to remove the effects of phylogenetic covariance.

pPCA scores are correlated

Even though pPCA axes are orthogonal with respect to each other,
pPCA scores are, in fact, highly correlated between axes. In our ex-
ample (Fig. 2), the scores on PC 1 and PC 2 are uncorrelated (R =
0.0), but the scores on pPC 1 and pPC 2 have a substantial correlation
(R = 0.39). The eigenvectors extracted from PP are orthogonal, but
the scores of the tips are not, which makes them very different from
normal PCA shape variables. This fact is an important consideration
for further analyses where statistical independence between variables
may be required.

Humerus morphology in mammalian carnivores:
a worked example
Here, we provide a worked example of a phylogenetic PCA using a
humeral dataset from musteloid carnivorans (red pandas, skunks, rac-
coons, weasels, badgers, otters, and allies) assembled by one of us (A.-
C. F.). This sample of small to medium-sized carnivorans is ideal for
demonstrating the utility of pPCA, as it includes terrestrial, fossorial,
arboreal, and aquatic species, and thus represents considerable ecolo-
gical and morphological diversity. The humerus is well known to re-
flect locomotory ecology, and provides a simple example of the rela-
tionship between shape, ecology, and phylogeny. However, morpho-
metric analyses of single elements are not without complications. In
particular, landmark-based geometric morphometric approaches may
be insufficient for analysing structures without points of clear homo-
logy, such as articular surfaces of long bones. In order to more accur-
ately represent themorphology of the humerus in themusteloid sample,
we gathered landmarks across the humerus, as well as semi-landmarks
from the distal articular surface, as described below. This study thus
provides an example of pPCA with a highly multivariate dataset that
is becoming increasingly common with the growing availability of ad-
vanced biological imaging tools.
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Figure 4 – Three-dimensional landmarks and semilandmarks of the humerus used in the
example study. Landmarks are numbered and semilandmarks were placed on the surface
outlined in red.

Specimens
Humeri for 29 species of musteloids, spanning their extant diversity,
were obtained from the following two collections: the Muséum na-
tional d’Histoire naturelle, Paris (Ailurus fulgens, Bassaricyon gabii,
Bassariscus astutus, Conepatus chinga, Eira barbara, Enhydra lutris,
Galictis vittata,Gulo gulo, Lontra felina, Lutra lutra, Lyncodon patag-
onicus, Martes foina, Martes martes, Meles meles, Mellivora capen-
sis, Mustela eversmanii, Mustela lutreola, Mustela putorius, Nasua
narica, Nasua nasua, Neovison vison, Poecilogale albinucha, Potos
flavus, Procyon cancrivorus, Procyon lotor and Pteronura brasiliensis)
and the NaturhistorischesMuseum, Basel (Mydaus javanensis, Taxidea
taxus andVormela peregusna). All specimens were adults and predom-
inantly wild caught. Because gender information is often missing from
museum specimens, specimens include both male and females. For the
purposes of this worked example, only one specimen per species was
used in the analyses. In order to perform pPCA on this sample, we used
the relevant subset of the supertree of Nyakatura and Bininda-Edmonds
(2012). While phylogenetic relationships based on supertree methods
are not always congruent with the relationships that would be obtained
directly from a combined phylogenetic dataset (Kluge, 1989), this su-
pertree is broadly congruent with carnivoran relationships as they are
currently understood.

Shape Coordinates
3-D surface scans of humeri were acquired with a white light fringe
Breuckmann scanner (StereoSCAN) using its dedicated scanning soft-
ware Optocat 2009 (http://www.breuckmann.com). Twenty-one true
landmarks and 285 semi-landmarks were selected to represent humeral
morphology (Fig. 4, Appendix). The landmarks were gathered using
the software package Idav Landmark (Wiley et al., 2005). To gener-
ate semi-landmarks a template was created as a reference following
the method of Souter et al. (2010). The 3-D sliding landmark proced-
ure (Bookstein, 1997b; Gunz et al., 2005) was used in order to gen-
erate landmarks within the boundaries of the template by transform-
ing sliding semi-landmarks into landmarks using Edgewarp3D 3.31
(Bookstein and Green, 2002). The semi-landmarks of the template are
warped onto each new specimen within the predefined curves of the
template (denoted by the red dotted line in Fig. 4) followed by spline
relaxation. Both sliding and relaxation are repeated iteratively until the
bending energy is minimized. After this operation has been performed,
the landmarks and semi-landmarks are treated identically as variables
in the equations described above.

Results
We performed several analyses on both PCA and pPCA scores to
demonstrate when the choice of method makes a difference. We looked
at the ordinations themselves, plus from the scores we constructed
distance-based and trait-based trees, two measures of morphological

disparity, and a multivariate regression to find the relationship between
shape and a continuous variable, and from the eigenvalues we calcu-
lated a simple measure of modularity.

Figure 5 – (a) Phylogenetic supertree of the 29 carnivoran species used in the example
data set, taken from Nyakatura and Bininda-Edmonds (2012). (b) PCA ordination of these
species based on 21 landmarks and 285 semilandmarks. The phylogenetic supertree for
these species has been projected into the space. (c) Phylogenetic PCA of the same
data. The first two axes of these ordinations are di�erent, but due to the considerable
homoplasy in humeral shape among these taxa the two ordinations are very similar. Note
that there are 26 additional dimensions to the shape space other than those shown here.

The PCA and pPCA ordinations were similar but not identical, even
though the phylogenetic tree used to produce the pPCA axes has a lot
of structure (Fig. 5). The fact that the two ordinations are rigid ro-
tations (plus translation) of each other can be seen in the plots, even
though only the first two dimensions of the shape spaces are visible.
Inspection of the plots reveals that humeral shape has considerable ho-
moplasy, with lineages from different clades independently colonizing
some regions of shape space. The homoplasy in this data set is prob-
ably responsible for the strong similarity in the two ordinations, having
masked most of the phylogenetic covariance in shape.

Distance-based trees based on the two sets of scores were identical
(Fig. 6a-b). These are UPGMA trees constructed from Euclidean dis-
tance matrices of the scores of the PCA and pPCA ordinations. Be-
cause inter-object distances are preserved in both kinds of ordination,
the distance matrices are identical; hence the trees are, too.

Trait-based trees were marginally different for PCA and pPCA (Fig.
6c-d). The trees shown here are maximum-likelihood trees using
the continuous traits algorithm implemented in PHYLIP (Felsenstein,
1973, 2009). This algorithm treats each trait, which consists of scores
on the 28 principal component axes, as independent in estimating the
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tree. The PCA and pPCA trees are different because the axes differ
between the analyses, and because the pPCA scores are not actually in-
dependent (uncorrelated) meaning that some of them contain redund-
ant information that causes some aspects of shape variation to be over-
weighted in the estimation of the ML tree.

Table 3 – Comparison of results of follow-up analyses performed using PCA and pPCA
scores as shape variables.

Analysis PCA scores pPCA scores
UPGMA tree Identical
ML tree Different
Disparity
(Mean pairwise Procrustes
distance)

0.174 0.174

Disparity
(Mean Procrustes distance to mean)

0.121 0.121

R2 of shape on centroid size 0.03 0.03
Eigenvalue variance 0.964 0.965
Eigenvalue standard deviation 0.00029 0.00003

Measures of disparity were identical between PCA and pPCA (Tab.
3). Since disparity is a measure of morphospace occupation, it is based
on any one of several measures of between-specimen distances (Foote
and Miller, 2007). We calculated two disparity metrics, the mean mul-
tivariate inter-species distance (which in this case is the Procrustes dis-
tance between species) and the mean multivariate distance (Procrustes
distance) between species and their group mean. When all dimen-
sions of the shape space are used, these disparity metrics are identical
between PCA and pPCA because distances between objects are pre-
served in both these analyses. If only the first two axes were used to cal-
culate disparity, the results would be different (but the results would not
be based on actual differences in shape, only on an arbitrarily defined
subcomponents of shape difference).

The proportion of variance explained by multivariate regression of
shape onto log centroid size (R2) was also identical between PCA and
pPCA (Tab. 3). The regression coefficients of each individual PC
differed slightly (not shown), because the PCs each represent a different
component of variance in the two analyses, but the overall relationship
between shape and size is conserved because the shape variables col-
lectively describe the same shape variation in PCA and pPCA, thus the
proportion of shape variance explained is identical.

Measures of eigenvalue dispersion, a straightforward and commonly
used estimate of morphological integration (Pavlicev at al., 2009; Gos-
wami and Polly, 2010) were also compared between PCA and pPCA.
While eigenvalue variance was nearly identical in the two analyses
(Tab. 3), eigenvalue standard deviation, which may be a more reli-
able indicator of integration, was tenfold higher in PCA than in pPCA.
In part the difference is due to the arbitrary scaling of the covariances
introduced by the branch length units in Equation 4 of pPCA, but the
difference is also due to non-proportional changes in the estimated co-
variance structure from having removed the phylogenetic covariances.
Thus eigenvalue dispersion measured from pPCA eigenvalues suggests
lower integration in the musteloid humerus than does the dispersion of
eigenvalues from PCA. Some of the integration in the ordinary PCA
results arises from the phylogenetic covariance of the taxa.

Discussion
Phylogenetic PCA is a compromise between non-
phylogenetic variance and total shape variance
The axes in pPCA describe the non-phylogenetic component of shape
covariance and, as a result, they are independent from phylogeny and
orthogonal to one another (Revell, 2009). On average, the eigensys-
tem derived from the phylogenetically corrected covariance matrix is
more closely related to the generating covariances than the uncorrec-
ted matrix (Revell, 2009). In some cases, such as our simulated ex-
ample, the uncorrected matrix and the first PC are also highly cor-
related with the generating covariances, but this will depend on tree
balance and mode of evolution. The scores of objects projected onto
pPCA axes are neither independent of phylogeny nor orthogonal with

respect to each other, however (as clearly stated by Revell 2009). The
scores are obtained by rigid rotation of the original data to the pPCA
eigenvectors, which preserves the inter-object shape distances, but also
preserves the phylogenetic structure in the data. The only difference
between a pPCA ordination and regular PCA is that the axes are ori-
ented differently and centered on a different point. The trajectory of
shape variation along the pPC 1 is by definition a trajectory parallel
to the major non-phylogenetic axis of variation, but the spacing of ob-
jects along pPC 1 includes phylogenetic similarity and difference. The
visual information conveyed by the spacing of objects in a pPCA plot
thus contains a significant phylogenetic component.

Non-independence of scores on pPCA axes may a�ect
some kinds of analysis but not others
Scores of objects on pPCA axes are correlated, whereas PCA scores
are uncorrelated across axes. Statistical independence is a desirable
property in shape coordinates that are used for tree building, statist-
ical analysis, or shape modeling (Rohlf, 1993), but it is not a require-
ment if the subsequent analysis does not assume independence of its
input variables. All of the analyses we applied to the example data set
were based on algorithms that take into account non-independence ex-
cept for maximum-likelihood tree building for continuous traits. Con-
sequently, results from PCA and pPCAwere identical except for theML
tree. pPCA scores can, therefore, be safely used as shape variables for
most applications, just as partial warps scores (Bookstein, 1997a) can
be used as shape variables even though they are similarly co-dependent
(Zelditch et al., 2004).

Dimensionality of pPCA space is appropriate for shape
analysis
Removal of the phylogenetic component of shape variance in the calcu-
lation of pPCA space does not change its dimensionality. The number
of pPC axes with non-zero variance is the same as the number of ordin-
ary PC axes, and that number is 2k −4 for two-dimensional landmarks
and 3k − 7 for three-dimensional landmarks (Rohlf and Slice, 1990;
Rohlf, 1999). pPCA scores thus have appropriate dimensionality for
further statistical analysis.

Adaptation versus direct environmental e�ects: Phylogen-
etic correction can be the wrong approach
Phylogenetic comparative methods are often employed for studying the
relationship between phenotypes and environment, but not all envir-
onmental effects on morphology arise from non-phylogenetic sources.
When the phylogenetic changes are adaptive (sensu Gould and Vrba
1982), then environmental components of variation are identical to
phylogenetic components. Greene (1986) and Coddington (1988)
provided a rigorous phylogeny-based method for studying adaptation,
arguing that for a phenotypic change to be considered adaptive, it must
have arisen on a phylogenetic tree at the same point as its associ-
ated change in function. In other words, functional (or environmental)
change must be perfectly correlated with phylogeny. Removing phylo-
genetic correlations from data will remove precisely the component of
shape variation that is relevant to adaptation.

Too often phylogenetic comparative methods are used to remove
the effects of phylogeny when the processes being studied are, in fact,
phylogenetic rather than non-phylogenetic (Westoby et al., 1995). Con-
flation of non-phylogenetic and environmental components of variation
in the literature probably arises by false analogy with the quantitat-
ive genetics concepts of “genetic” and “environmental” components of
phenotypic variance (Falconer and Mackay, 1996; Lynch and Walsh,
1998). Phylogenetic comparative methods similarly partition phen-
otypic variance among taxa into phylogenetic and non-phylogenetic
components (Martins and Hansen, 1997; Felsenstein, 2003), but the
analogy that the non-phylogenetic component is “environmental” and
the phylogenetic component is not does not hold. Rather, the non-
phylogenetic component of comparative data is the component asso-
ciated with universal factors that affect organisms regardless of their
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Figure 6 – Trees constructed from PCA and pPCA scores. UPGMA trees constructed from
PCA scores (a) and pPCA scores (b). These trees are based on inter-object distances,
which are conserved by these two methods, and so they are identical. Continuous-trait
maximum-likelihood trees constructed from PCA scores (c) and pPCA scores (d). The ML
method treats each PC as if it were an independent trait. Because PCA and pPCA find
di�erent axes and because pPCA scores are intercorrelated, the two ML trees are di�erent
(though only minorly so for this particular data set).

phylogenetic relationship, whereas the phylogenetic component of vari-
ation is the component shared through ancestry. pPCA may therefore
not be appropriate if adaptation of morphology is being studied, or if
homoplasy is being assessed.

Similarly, the removal of phylogenetic covariances in analyses of
modularity or morphological integration should be carefully con-
sidered. In the musteloid humerus example, measures of eigenvalue
dispersion were very similar for PCA and pPCA, but eigenvalues from
pPCA did show lower standard deviation, and thus lower integration,

than those from PCA. A strong relationship between generating co-
variances, such as those driven by genetic and development effects,
and phylogenetic covariances may be expected, as evolution along
any branch will be strongly influenced by the generating covariances.
Moreover the genetic and developmental drivers of morphological in-
tegration and modularity inevitably correlate strongly with phylogeny.
Removing the phylogenetic covariances may thus also obscure the real
modularity or integration of a structure. For some analyses of mod-
ularity, it may be appropriate to remove phylogenetic effects prior to
analysis of trait covariances, but, as with environmental effects, using
phylogenetic comparative has the capacity to obscure, as well as to re-
veal, evolutionary relationships among traits.

Conclusions
Phylogenetic PCA belongs to the class of phylogenetic comparative
methods that remove the expected covariance among objects prior to
statistical analysis. The general purpose of such methods is to correct
the statistical non-independence of data points that arises from shared
phylogenetic history for tests whose p-values depend on the assump-
tion that data points are independent (e.g., the probability that the slope
of a regression line significantly differs from zero). These methods
down-weight the contribution of closely related taxa to test the rela-
tionship between phenotype and associated function or environment
because each of close relatives is putatively sampling the same evol-
utionary adaptation in their common ancestor. Phylogenetic PCA is
an unusual example of phylogenetic comparative methods because it
is not an analysis per se and it serves as a replacement for ordinary
PCA, even though the latter does not depend in any way on objects
being statistically independent. pPCA is a potentially confusing mix-
ture of major axes that describe non-phylogenetic variation and scores
that contain phylogenetic components of variation. The individual axes
of pPCA therefore are not usually aligned with clade differences; how-
ever, phylogenetic groupings are still equally as evident in pPCA as they
would be in ordinary PCA. Potentially undesirable properties of pPCA
are that the scores are correlated between axes, the variance of scores on
pPC axes does not necessarily decrease with sequentially higher axes,
and pPCA scores are not phylogenetically corrected for purposes of
subsequent analysis. Nevertheless, pPCA space can be used for geo-
metric morphometric shape modeling and its scores have other prop-
erties that are desirable for shape variables, such as having the cor-
rect dimensionality and being complete descriptors of shape variation.
Phylogenetic principal components analysis can, therefore, be included
among the tools available for geometric morphometric analysis as long
as it is used knowledgably.
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Appendix
Definitions of the 21 landmarks used in the example study of carnivoran
humerus shape.

Landmark Definition
1 Most medio-distal point of the caudal part of the capitulum
2 Most medio-proximal point of the caudal side of the capit-

ulum
3 Point of maximum of curvature of the olecranon fossa
4 Most latero-proximal point of the caudal side of the capit-

ulum
5 Point of maximum of convexity of the lateral epicondylar

ridge
6 Point of insertion of the lateral epicondylar ridge on the

diaphysis
7 Most proximal tip of the entepicondylar area
8 Most distal tip of the entepicondylar area
9 Most medio-proximal point of the cranial side of the capit-

ulum
10 Point of maximum of curvature of the coronoid fossa
11 Most proximal point of contact between the trochlea and

the capitulum
12 Point of maximum of curvature of the radial fossa
13 Most latero-proximal point of the cranial side of the capit-

ulum
14 Most disto-lateral point of the capitulum
15 Most distal point of contact between the trochlea and the

capitulum
16 Most distal point of the deltopectoral crest
17 Tip of the lesser tuberosity
18 Most proximo-medial point of the greater tuberosity
19 Most disto-medial point of the greater tuberosity
20 Most latero-distal point of the cranial side of the capitulum
21 Point of maximum of concavity of the caudo-medio-distal

part of the capitulum
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