Published by Associazione Teriologica Italiana

Hystrix, the Italian Journal of Mammalogy

Available online at:

http://www.italian-journal-of-mammalogy.it/article/view/10993/pdf

OPEN 8ACCESS

7
N7

ld

Volume 25 (2): 73-81, 2014

doi:10.4404/hystrix-25.2-10993

Research Article

Missing the third dimension in geometric morphometrics: how to assess if 2D images really are a good

proxy for 3D structures?

Andrea CARDINI®*

“Dipartimento di Scienze Chimiche e Geologiche, Universita di Modena e Reggio Emilia, l.go S. Eufemia 19, 41121 Modena, Italy
hCentrefor Forensic Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Keywords:

Analysis of variance
cranium

landmarks
mandible

marmots
measurement error
photos

Procrustes

shape analysis

Article history:
Received: 19 November 2014
Accepted: 29 December 2014

Acknowledgements
| am deeply grateful to the curators of the United States Natural History Museum,

Abstract

Procrustean geometric morphometrics has made large use of 2D images for studying three-
dimensional structures such as mammalian bones or arthropod exoskeleta. This type of use of
2D data is still widespread today and will likely remain common for several years due to its sim-
plicity, efficiency and low cost. However, using 2D pictures to measure morphological variation in
a 3D object is an approximation that inevitably implies measurement error. Despite this being an
obvious problem, which was emphasized since the early days of the first applications of geometric
morphometrics to biology, whether 2D is a good proxy for 3D has been a rather neglected topic in
the literature until very recently. In this paper, using marmot mandibles and crania as an example,
I show how to assess the potentially crucial impact of *missing the third dimension’ in 2D land-
marks and suggest a new method to test the accuracy of these data: the method is simple and can
be easily performed in a user-friendly free software such as Morphol. This test is complimentary to
other more exploratory analyses, that can also be performed using free programs and might offer a
routine protocol to estimate the goodness of the 2D to 3D approximation in geometric morphomet-
rics. Example data and a fully worked out Morphol project are provided for readers to learn how
to replicate the analysis.
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Introduction

Procrustean geometric morphometric (GMM) analyses Adams et al.
(2013) of three-dimensional (3D) structures are often performed on
two-dimensional (2D) images. For instance, in my personal collection
of 76 GMM studies using Procrustes methods, and published in major
evolutionary, zoological and anthropological journals in the first nine
months of 2014, more than half (57%) are 2D analyses, although vir-
tually all of them concern 3D anatomical structures. This is clearly not
an exhaustive assessment of the recent literature, but it helps to appre-
ciate how common 2D analyses are even in the second decade of the
21* century, a time when tools for 3D measurements (3D digitizers,
surface scanners etc.) have become cheaper and more accurate than in
the early days of GMM. Then, why are 2D analyses still so popular?
Besides a few analytical advantages, such as computational simpli-
city and an effective visualization of shape change using thin-plate
spline (TPS) grids (Klingenberg, 2013, and references therein), 2D
data are easy to collect and generally inexpensive. Most of the time,
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a tripod or a copy stand and a camera (or a microscope) with good
lens allow to acquire accurate pictures. These, together with a pro-
tocol to standardize photographic settings (e.g., Cardini and Tongiorgi,
2003), make data collection effective, fast and low cost. 2D landmarks
can also be easily digitized on digital images using TPSDig (Rohlf,
2014) and efficiently processed in a variety of free GMM programs
(http://life.bio.sunysb.edu/morph/toc-software.html). Using the same
type of software, the now increasingly popular methods for the ana-
lysis of semilandmarks' are similarly easily applied to the study of 2D
curves. Thus, cost-effectiveness, rapidity of data collection and analyt-
ical simplicity contribute to explain the enduring success of 2D land-
mark analyses. Also, in specific instances, 2D data might be interest-
ing in comparative terms (e.g., Bush et al., 2011, forensic assessment

!'Semilandmarks lack the precise one to one correspondence of anatomical landmarks.
For this reason they are generally slid on a curve to improve their mathematical corres-
pondence. Sliding is extremely simple for 2D data using a user-friendly free program
such as TPSRelw (Rohlf, 2014). Although this is marginal to this paper, to avoid a
common confusion on what sliding does, I am using italics to stress that this method —
described by Bookstein (1997), and recently reviewed by Gunz and Mitteroecker (2013)
-— is about mathematical/geometric correspondence, which is not generally the same as
biological “homology” -— Klingenberg (2008); Oxnard and O’Higgins (2011).
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of the performance of 2D and 3D analyses of bitemarks) or in them-
selves (e.g., in a biometric individual identification from pictures), as
they may correspond to the reality of the data one has to extract inform-
ation from.

It is obvious to anyone, however, that whenever a study structure is a
3D object, 2D pictures will inevitably imply a loss of information and
a degree of inaccuracy in estimating size and shape. For brevity, this
approximation of a three-dimensional object with a two-dimensional
picture will be henceforth abbreviated with TTD (Two to Three Dimen-
sional approximation). Fly wings and some plant leaves may produce
2D data with virtually no TTD error, as they are so flat to be almost per-
fectly two-dimensional. Radiographs are also somewhat special, in that
they generally capture a specific 2D aspect of variation in 3D objects
(e.g., human cranial midplanes — Bastir et al., 2006); as long as only
that given aspect is concerned, radiographs may therefore be a very ac-
curate source of 2D data. The outline of some types of fishes and shells
also may introduce very small TTD errors, as long as the points used
to measure form are on the same plane (e.g., the midplane of a fish —
Cavalcanti et al., 1999 — or the occlusal margin of a bivalve shell —
Marquez et al., 2010). However, by far the largest majority of studies
on mammal bones, a most common subject in geometric morphomet-
rics (Cardini and Loy, 2013), focus on highly 3D anatomical features.
Similarly, the head, pronotum and elytra of beetles (Pizzo et al., 2006)
or the carapace of a crab (Rufino et al., 2006) are highly 3D structures,
and arthropods are another common study group of morphometricians.
Therefore, 2D pictures of many organisms or their organs can only be
regarded as a proxy of the real three-dimensional anatomy. This proxy,
however, may not be as accurate as one might wish.

Even if the problem is self-evident and clearly important, TTD has,
to my knowledge, rarely been mentioned in the GMM literature. Roth’s
(1993) article on “On three-dimensional morphometrics, and on the
identification of landmark points” may be one of the main exceptions.
In that paper, Roth (p. 46) asks: “How is it that the two-dimensional
representation of three-dimensional objects has become standard prac-
tice? Why does this seem natural, and why does it not strike us perpetu-
ally as a compromise?”. She goes on providing an in depth discussion
of the crucial relevance of 3D landmarks in the study of morphological
variation. In doing this, she anticipates the potential of photogram-
metry and suggests how to minimize TTD errors. However, despite
such an important reference dating back from the early days of geo-
metric morphometrics, no one (but see also below) seems to have sug-
gested a method to effectively test whether the inaccuracy in 2D data is
really negligible.

Other sources of measurement error, in contrast, such as digitizing,
positioning and instrumental errors, are commonly assessed and some-
times tested by comparing the amount of “real” biological variation in a
sample to measurement error using an analysis of variance (ANOVA —
Arnqvist and Martensson, 1998; Klingenberg et al., 2002; Viscosi and
Cardini, 2011). In fact, Arnqvist and Martensson (1998), in their de-
tailed treatment of measurement error in GMM, do not fail to mention
also TTD. However, they do not provide a suggestion on how to test it
and only this year, more than two decades after Roth’s (1993) seminal
paper, there seems to be a sudden resurgence in TTD studies. Indeed,
at the time when this study was done, there were very few online ref-
erences on this topic but some useful suggestions on ongoing studies
were provided by subscribers of the email morphometric discussion
list (MORPHMET -— http://www.morphometrics.org/lhome/morphmet).
Among others, MacLeod et al. (2014), as well as morphometricians in
Serbia (Djurakic, pers. comm.), are working on comparisons of 2D and
3D techniques; also, in the last three months there have been at least two
conference abstracts presenting methods to estimate TTD (Close and
Friedman, 2014; Watanabe, 2014), none of which, however, provides
details on what is actually done. Thus, there might be now several par-
allel developments on how to explicitly and numerically address the
TTD issue, and my hope is that this study will contribute to move an-
other small step forward in that direction.

The main problem with estimating TTD is that 2D and 3D shape data
have different dimensionality and thus occupy different shape spaces.
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This precludes any analysis (PCA, cluster analysis, ANOVA etc.) that
requires commensurable data. Correlational studies are still possible,
but they provide only a partial answer on the impact of TTD, as they
simply produce crude estimates of the proportionality of size and shape
differences in 2D and 3D datasets. An example of this approach, which
I call “traditional”, is my own work with Thorington in 2006. In that
paper on marmot ontogeny, we explored the impact of TTD by selecting
subsets of landmarks in common between a 3D configuration and 2D
landmark data on both the dorsal and lateral 2D views of the cranium.
Thus, using the same specimens and landmarks, we estimated the cor-
relation between centroid size in the different datasets; we computed
the correlation between the matrices of Procrustes shape distances from
2D and 3D data; and we also compared ontogenetic patterns in scat-
terplots and shape diagrams based on the 2D-3D data. Our conclusion
was that, for that specific dataset, correlation was very high for size and
fairly high for shape with results generally in good agreement between
the more accurate’ 3D landmarks and the 2D photos. However, that
study does not provide any real test of TTD and most of the assessment
of the importance of TTD is left to the researchers’ individual judge-
ment.

In this paper, I take our 2006 work as a starting point and, using
partly the same data and partly new data on mandibles and ventral cra-
nia, [ explore multiple methods to carefully assess TTD. In this process,
I suggest a new approach that allows to bring 2D and 3D data in a com-
mon shape space to perform a direct comparison of their similarities
and differences. This new approach is based on simple operations that
transform the data so that TTD becomes testable using the same AN-
OVA model which is routinely employed to test other sources of meas-
urement error in GMM data (Viscosi and Cardini, 2011). In the article,
I will explain in details how to replicate the analysis using Morphol
(Klingenberg, 2011) and a subset of my own data, as an example.
Morphol is free (http://www.flywings.org.uk/morphoj_page.htm), user-
friendly but powerful, and likely represents today the most commonly
used program for Procrustes GMM. With this study, and by providing
data and a fully worked out Morphol project, I wish to further stimu-
late work on the fundamental but to date neglected subject of whether
the widely used 2D data really are a good proxy for their 3D counter-
parts. Testing this potentially crucial source of error might indeed soon
become routine in GMM, as for digitizing and other types of errors.

Material and Methods

Data acquisition

Two structures and a total of four datasets are analysed. The first one is
a sample of left hemimandibles (henceforth briefly referred to as mand-
ibles) of 20 adults hoary marmots (Marmota caligata), where a config-
uration of nine landmarks (Fig. 1a; Cardini, 2003, and Cardini et al.,
2009 and references therein) was digitized in 2D using either pictures
taken with a camera (Cardini and Tongiorgi, 2003) or simply acquired
using a flat-bad scanner (Nagorsen and Cardini, 2009). The same nine
landmarks were also digitized directly in 3D on the actual bones using
a Microscribe 3D digitizer.

The second structure and the other three datasets are from a sample
of cranial data on the left half of the skull of 49 yellow-bellied marmots
(Marmota flaviventris). These are mostly adults but also include a few
young. They are the same subset of data used by Cardini and Thor-
ington (2006) to test the congruence of shape distances in 2D and 3D.
However, compared to that study, which only used the dorsal (Fig. 1b)
and lateral (Fig. 1c) views of the cranium, I have also included here
their ventral view (Fig. 1d; Cardini and O’Higgins, 2005). 2D pictures
of crania were taken using a camera and the same protocol described
for the mandibles (Cardini and Tongiorgi, 2003). Unlike the relatively
flat mandibles, crania cannot be imaged using a flat-bad scanner, as the

2Accuracy is rigorously defined as “closeness of agreement between a measured quantity
value and a true quantity value of a measurand” (JCGM, 2008, p. 21). In this study, I
am informally using accuracy also to refer to the better quantitative description of a 3D
structure provided by 3D data compared to 2D measurements with their inevitable loss
of information.
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Figure 1— Landmark configurations on mandibles (N=20; 9 landmarks) (a), and crania (N=49) in (b) dorsal (9 landmarks), (c) side (7 landmarks) and (d) ventral view (20 landmarks).

depth of field of about 1 cm (or less) of a standard scanner is inad-
equate for highly three-dimensional objects. As for the mandibles, 3D
landmarks were also digitized directly on crania using a Microscribe.
In each different view, as in Cardini and Thorington (2006), the land-
marks shown in Fig. 1b,c.d represent a subset of anatomical points, in
common between 2D and 3D data, selected from an originally larger
configuration of landmarks.

All specimens belong to the collection of the United Stated Nat-
ural History Museum in Washington DC. A list of museum catalogue
numbers can be made available from the author upon request. As an
example, mandible raw data (3D and 2D photos) are made available
in nts format as supplementary information online. The nts format
is a commonly used ASCII (i.e., text) format that can be easily im-
ported in programs of the TPS Series (Rohlf, 2014) and IMP Series
(Sheets, 2014), Morphologika (O’Higgins and Jones, 2006), MorphoJ
(Klingenberg, 2011) and the Geomorph R package (Adams and Otérola-
Castillo, 2013). For this dataset, a fully worked out Morphol project is
also provided for readers to use it as a guideline and learn how to rep-
licate the main steps of the analysis on their own data. For this same
didactical reason, I will sometimes include details about how to ob-
tain specific analyses in MorphoJ and, in a few instances, PAST 2.17¢
(Hammer et al., 2001). For more detailed information on software,
however, I refer readers to the extensive help files of those programs.
Also, I want to stress that, although I tend to focus mainly (but not ex-
clusively) on user-friendly software to aid beginners, analyses can be as
well performed in advanced statistical environments such as R (R Core
Team, 2014). For those interested in this, I made available as online
supplementary material a simplified R script, which allows to perform
the resampling version of the ANOVA model used in the new approach
and not yet available in Morphol.

Analysis I: comparison of patterns and correlations (“tra-
ditional” approaches)

These are largely “traditional” approaches. They are mainly explorat-
ory in nature. 2D and 3D datasets are superimposed separately using
a Procrustes fit (Adams et al., 2013) to compute centroid size (hence-
forth, simply referred to as “size”) and Procrustes shape coordinates
(henceforth, simply “shape coordinates™). This means that 2D and 3D
shape data belong to different shape spaces each with its own specific
Procrustes distance metric.

Patterns are visually compared across dataset (e.g., 2D dorsal view
of the cranium vs its 3D counterpart) using box-plots (size) and scatter-
plots of the first principal components (PCs) of the shape coordinates.
Box-plots can be drawn in PAST after rearranging size data in columns
(menu Plot, Barchart/Boxplots). PC scatterplots can be obtained in
MorphoJ (menu Preliminaries, Generate covariance matrix, followed
by Variation, Principal Component Analysis), as well as in PAST (menu
Multivar, Principal Component Analysis using the Var-covar option).
Variation at the opposite extremes of a PC axis is visualized using wire-
frame shape diagrams (Klingenberg, 2008). These were computed in
Morpheus et al. (Slice, 1999), but can be more directly obtained in
Morphol, as part of the outcome of a PC analysis.

The covariation of 2D and 3D data is assessed using simple Pear-
son correlations for size and three different approaches for shape. The
first of these approaches is a simple matrix correlation between the Pro-
crustes shape distances from 3D and 2D data. Computations are per-
formed in PAST (menu Multivariate, Mantel test using Euclidean dis-
tances from shape coordinates exported from Morphol®). In doing this,

3To generate the shape coordinates one could perform the Procrustes superimposition dir-
ectly in PAST and then project the data in the tangent space in the same software. By
doing this separately for each of the 2D datasets and the 3D landmarks, results should
be identical to those of MorphoJ. However, a bug in the 2.17¢ version prevents from a
correct computation of the 3D shape coordinates. Therefore I suggest to simply import
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Figure 2 — (a) Mandibles: same individual seen in side (left) and from above (right)
views using 3D data (al), 2D pictures (a2), and 2D scans (a3). (b) Same views showing all
specimens after the superimposition in the common shape space.

the shape coordinates from Morphol or check if the bug has been fixed in a more recent
version of PAST.
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Figure 3 — (a) First two PCs of mandible shape coordinates showing two main clusters,
which correspond to 2D data (negative scores, light and dark grey circles) and 3D data
(positive scores, black circles); PCl accounts for 58.9% and PC2 for 12.5% of total shape
variance. (b) Shape wireframe diagrams corresponding to opposite extremes of PCl are
shown superimposed below the scatterplot (left, lateral view; right, view from above): grey
is the negative extreme (2D data) and black the positive one (3D data); (b) is without mag-
nification; (b2) is with the positive extreme magnified five times relative to the observed
score (i.e., if the observed score was 0.08, the shape being visualized corresponds to its
extrapolation for a score of 0.4).
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it is important to bear in mind that the test is only performed as a way
to obtain the correlation value. The p value itself is meaningless in this
specific context and must not be considered, as it is not the aim of the
analysis and it would be incorrect because the data are not independ-
ent. The same reasoning applies to the RV coeflicient (below), which
is an overall measure of association between two sets of variables (i.e.,
an estimate of the strength of the covariance between 3D and 2D), and
the test of variances and covariances (further below). Thus, as a second
step, the RV coeflicient is computed in MorphoJ (menu Covariation-
Partial least squares, focusing only on the RV value in the results win-
dow). Finally, the similarity in variance-covariance matrices (VCV)
from the two types of data is measured using again a simple matrix
correlation in MorphoJ (menu Variation, Matrix correlation).

Analysis Il: comparison of 2D and 3D data in the same
shape space and ANOVA test (“new” approach)

The “new” approach requires bringing the 2D and 3D data into the same
shape space. This apparently difficult operation can be achieved with
a trivial expedient: adding a third zero Z coordinate to each landmark
in the 2D data. This operation is manually performed in a spreadsheet,
and allows to superimpose 2D and 3D data together and thus obtain
shapes whose differences are measured in the same units of Procrustes
shape distance, as they are all in a common shape space.

The common superimposition has no effect on the estimate of
centroid size. In fact, if variance in size is significantly larger than
differences between 2D and 3D estimates (i.e., the TTD error) can
be tested regardless of whether the data are superimposed separately
(approach I) or together (approach II). This type of test is done using
the same ANOVA model routinely employed for other sources of er-
ror (Viscosi and Cardini, 2011). I am performing the ANOVA on size
here, as part of the new approach (II), simply because this way all size
and shape analyses are performed in parallel in the same section and
using the same software (see shape ANOVA, below).

The 2D-3D common Procrustes analysis also has a negligible effect
on shape distances within each dataset (2D vs. 3D). This is shown by
comparing shape distances within a dataset (e.g., 2D dorsal view) after
separate superimpositions (approach I) or a common superimposition
(approach II). In all instances, matrix correlations are virtually equal to
1. For example, for the 2D dorsal view, the correlation between shape
distances after a 2D superimposition and after a 3D GPA (2D and 3D
superimposed together using a zero Z coordinates for 2D) is 0.99992.
Because this result is marginal to the main aim, I am briefly mention-
ing it in the methodological description of the new approach. However,
that shape distances are faithfully preserved within type of dataset (2D
or 3D) regardless of whether 2D and 3D data are or are not in the same
shape space may be specific to the study samples and should be prelim-
inarily checked. This is a recommendation that I suggest to follow as
long as we gain more experience on the effects of the common 2D-3D
superimposition, but it seems unlikely that results will be very differ-
ent from mine. This is because, when the tangent space approximation
in both 2D and 3D is good, the amount of variation is relatively small
and a common superimposition should fit the data about as well as sep-
arate ones. In the datasets I used, the tangent space approximation was
indeed excellent with almost identical shape distances in the curved
Procrustes shape space and in its tangent Euclidean space projection
(correlations and slopes of shape distances both virtually equal to one
in all 2D and 3D datasets — TPSSmall, Rohlf, 2014).

Data in the common shape space, for instance the 2D and 3D mand-
ibles, should not, nevertheless, be compared directly as they are. This
is because 2D and 3D shapes will be far apart in the space simply be-
cause of the third Z dimension (“thickness™), which is in fact present
only in the real 3D data (Fig. 2 and 3). This difference is a loss of in-
formation in the 2D data but may not represent a the most problematic
source of inaccuracy. This is because, at least when variation is small
as in a group of closely related species, it is likely to affect all individu-
als in a similar fashion. This type of systematic error, or bias, although
important in absolute terms, can be controlled for. In fact, for obtain-
ing accurate numerical results in 2D, what is really crucial is that the
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relative shape distances among specimens in 2D are similar to those of
3D data. This would imply that, despite the loss of information in the
third dimension, 2D landmarks accurately capture the relative shape
differences among individuals in the sample.

Thus, the second step of the new approach is to mean center the
datasets, which is achieved by removing (manually in a spreadsheet)
the 2D as well as the 3D means from the respective shape data. This
obviously does not change the relative structure of the similarity rela-
tionships within each dataset (3D and 2D), as it is easily verified by
observing that matrix correlations of 2D (or 3D) data before and after
mean centering are all equal to 1.

After the common superimposition and the mean centering, data can
finally be compared as customary (Viscosi and Cardini, 2011): thus, as
for size, if the 2D approximation introduces a negligible relative in-
accuracy, shape differences among individuals should be significantly
larger than the difference between 2D and 3D datasets. This is tested
in an ANOVA with individuals as a random factor and TTD as the er-
ror term. The test can be performed either using parametric statistics
(in Morphol or the car R package — Fox and Weisberg, 2011) or using a
permutational ANOVA (in the vegan R package — Oksanen et al., 2013
— or in PERMANOVA - Anderson, 2001; Franklin et al., 2013, for an
appendix with a tutorial). Actually, with a simple expedient (below),
the whole procedure including mean centering and the parametric test
(menu Variation, Procrustes ANOVA) can be performed in Morphol.
This first require mean centering, an operation that I suggested to per-
form manually in a spreadsheet, even if it can also be achieved directly
in Morphol by regressing shape data from the common superimposi-
tion onto a dummy variable which specifies if data are 2D or 3D. The
dummy variable is created as a Morphol covariate, where groups are
coded with -1 (or zero) for 2D data and 1 for 3D data. The residuals of
this regression will be equivalent to the mean-centered data from the
procedure described at the beginning of the paragraph. Then, in prin-
ciple, one should be able to select the regression results in the MorphoJ
project and specify the Procrustes ANOVA. The ANOVA simply re-
quires a grouping variable (classifier) that uniquely identifies speci-
mens (e.g., 1 for specimen A in both 2D and 3D data, 2 for specimen B
in 2D and 3D data etc.). This classifier is used as the individual factor
in the analysis. In practice, however, the current 1.06c version of the
software does not allow users to perform ANOVAs on regression res-
ults. Unless this option becomes available in the future, the way to get
around the problem is simply to export the residuals, re-import them
and recreate the individual classifier to finally perform the Procrustes
ANOVA*.

The ANOVA test offers an objective method to verify if one can be
confident that 2D data are accurate in relation to the amount of vari-
ation in the study sample. This is because TTD, like all types of meas-
urement error, is never absolute and must be assessed in relation to
the differences among the organisms in the study sample (Arnqvist and
Martensson, 1998). The ANOVA does provide this objective and essen-
tial information but an exclusive focus on statistical significance may
be unwise. Results could be highly significant even if TTD is relatively
large and 2D data are therefore not as good as it might be desirable.
To avoid this pitfall, the magnitude of the effect being tested is also
estimated. This is equal to the proportion of variance accounted for
by individual variation with the remaining unexplained variance be-
ing the TTD error. The proportion is easily computed manually as the
ratio between the individual sum of squares (SSQ) and the total SSQ
(individual plus error) from the output table of Morphol.

Finally, to further increase confidence in the accuracy of 2D data, the
mean centred shape variables are subjected to a UPGMA (Unweighted
Pair Group Method with Arithmetic mean) cluster analysis using Euc-
lidean distances in PAST (menu Multivar, Cluster analysis, using Eu-

4Morpho] will force the user to re-superimpose the data after re-importing them. How-
ever, as residuals already came from superimposed data, this will not make any appre-
ciable difference. Users are suggested to restore size variation (a simple multiplication
of shape coordinates by the corresponding centroid size) before reimporting the data.
Otherwise, they need to remember that the ANOVA on centroid has to be done on the
original data and that any result on size obtained from the mean-centered shape dataset
has to be ignored!
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Figure 4 — Mandibles: example of graphical comparison of patterns in 3D and 2D
estimates of size. (a) Box-plot of size for 3D, and 2D photos and scans. (b) Scatterplots
of size from 2D photos (bl) and scans (b2) compared to 3D data.

clidean distances and paired group algorithm). The resulting pheno-
gram summarizes shape relationships as a tree and generally preserves
well small scale distances. In this tree, I counted how many specimens
clustered with their 3D counterpart: if TTD is small, the expectation is
that 2D and 3D data of most, if not all, specimens will be “sister’ in the
terminal branches of the tree.

Results and Discussion

Analysis I: comparison of patterns and correlations (“tra-
ditional” approaches)

Box-plots of size are similar regardless of whether size is estimated us-
ing 3D data or 2D images. This is exemplified for the mandibles in
Fig. 4a. Box-plots of cranial data are similarly congruent across data
type (2D vs 3D), although congruence seems slightly less in box-plots
from the lateral view of the cranium (not shown). In all datasets, aver-
age 2D size has a relative deviation from its 3D estimates that is equal
to or less than 2% of the 3D mean itself. For instance, using mandible
2D photos, mean size is 76.6 mm with an absolute deviation of 1.4 mm
from the 78.0 mm mean estimated from 3D data, and therefore a relat-
ive deviation of 1.4/78.0 = 0.017 or 1.7%. The corresponding relative
deviations for the standard deviations are somewhat larger and range
from less than 1% (mandible) to almost 6% (ventral cranial data). The
correlations of 2D data with 3D ones are about 0.99 or higher in all
structures and views (Tab. 1; Fig. 4b).

Table 1- Separate superimpositions correlational analysis.

view and 3D vs. Size Shape

structure 2D r matrix r RV VCV
mandible (ma) photos  0.987 0.790 0.873  0.843
mandible (ma) scans  0.991 0.667 0.713  0.736
dorsal cranium (dc) photos  0.996 0.686 0.703  0.717

lateral cranium (Ic) photos  0.995 0.639 0.703  0.733

ventral cranium (v¢)  photos  0.998 0.517 0.623 0.513
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Overall, results from the visual inspection of patterns, the descript-
ive statistics and plots, and the correlations indicate that size is quite
accurate in 2D. There is a small error, however, and some parameters
such as standard deviations may be more strongly affected by TTD er-
rors. Interestingly, some of the relative deviations of the means were
negative (lateral, -1.7%, and ventral views, -0.2%). This means that the
3D mean is slightly smaller than its 2D estimates. As depth in the third
dimension is expected to increase linear distances from the centroid in
3D data compared to the corresponding 2D estimates, the overestimate
in 2D photos is counter-intuitive. It may be related to inaccuracies in
the scale factor used to convert pixels into millimeters. This is plaus-
ible because, especially in the lateral view, which has the highest negat-
ive mean deviation, the millimeter paper ruler used to scale the images
lies further back relative to the plane where most landmarks are. This
means that the number of pixels, corresponding to the length meas-
ured in TPSDig to scale the data and convert pixels into millimeters, is
smaller than it should. That makes the denominator of the ratio used
to scale the data smaller and therefore leads to an overestimate of the
factor by which coordinates in pixels are multiplied, thus slightly in-
flating centroid size. This is overall a small error but one that can be
avoided with a careful consideration of the effects of apparently small
details, such as the positioning of the scale factor, during data collec-
tion. Alternatively, if the relative distance of the scale and the land-
marks from the camera is known, one could be able to correct for this
type of error.

The comparison of patterns (ordinations and shape diagrams) of
shape change in 2D and 3D after separate superimpositions are presen-
ted and discussed only for mandibles and ventral crania. These datasets
respectively have the highest and lowest correlations of 3D vs 2D shape
distances (see below). Results for dorsal and side views of the cranium
are largely similar to those of the ventral view. Scatterplots of the first
two PCs of mandibular shape indicate a degree of congruence between
3D data and 2D photos. This is somewhat less evident for 2D scans,
where the scatterplot looks as if the direction of largest variation in the
3D data is rotated of almost 90 degrees (Fig. 5: al vs. a3). How-
ever, the general pattern of shape variation captured by PC1 in all three
sets of mandibular data is similar and concerns changes from a slender
and slightly elongated mandible to a more robust, relatively shorter and
deeper one (Fig. 5).

It is important to observe that the comparison of patterns using PC1
is meaningful because this dimension explains almost twice the amount
of mandibular shape variance explained by PC2, and its orientation
should therefore be relatively stable. This is true also for all 3D and 2D
cranial datasets (below), except the 2D ventral crania, whose PC1 ex-
plains about the same amount of variance as PC2 (ca. 15% and 13% re-
spectively). PC2, however, is on average (in all datasets) just 1.3 times
larger, in terms of variance, than PC3. As with PC2 relative to PC3, also
other higher order PCs up to the 10" tend to explain only 1.2-1.5 more
variance than the next PC. Thus, in contrast to PC1, variation summar-
ized by other PCs may not be strictly comparable, because shape vari-
ance becomes almost circular in the subspace of PCs other than PC1
and therefore the orientation those PCs becomes unstable.

The congruence between 3D and 2D data is much less evident in
scatterplots and shape diagrams of ventral crania (Fig. 6). As anticip-
ated, shape variation in 2D ventral crania is almost isotropic, thus mak-
ing more difficult a truly informative comparison of scatterplots and
shape changes. Indeed, in general, there seems to be no evident simil-
arity between the scatter of points on PC1-2 from 2D and 3D analyses.
Contrary to mandibular data, this lack of congruence is also apparent
in the PC1 shape diagrams: the aspects of shape variation captured by
this axis are not easily comparable across type of data, and similarities,
if present, are not evident by eye. In fact, the shape corresponding to
the negative extreme of PC1 in the 3D analysis appears roughly similar
to that of the negative extreme in the 2D analysis, but this corresponds
to specimen 31 in the 2D dataset and this specimen is actually at the
positive extreme of PC1 using 3D landmarks. This indicates that the
difference in PC1 is not just a simple matter of flipping the axis, be-
cause of the arbitrary sign of PCs: 3D and 2D data do seem to suggest
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Figure 5 — Scatterplots of the first two PCs of shape after separate superimpositions of
mandible 3D and 2D datasets, and visualization of shape variation at opposite extremes
of PCI (for 3D data, the upper diagrams show depth variation, which is missing in 2D
data): (al) 3D (PCl 30.7%; PC2 15.4% of total shape variance); (a2) 2D photos (PCl 34.4%;
PC2 22.1%); (a3) 2D scans (PCl 39.4%; PC2 21.7%). In this and the next figure, 95% equal
frequency ellipses and convex hulls are shown in each scatterplot; also, arrows are used
to emphasize the positions of two specific individuals in scatterplots as an aid to compare
directions of change and patterns of differences in 2D and 3D analyses.
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different patterns of shape variation, and 2D shapes fail to capture any
dominant direction of change in ventral crania.

Variation in mandible and cranium depth (Figg. 5-6al upper dia-
grams) cannot be compared, as this is found only in the 3D data. This
clearly represents an important limitation to the interpretation of pat-
terns of shape variation. Indeed, even if the 2D approximation of rel-
ative shape differences is good and the numerical results accurate, the
third physical dimension is not there and any change in that direction
will be inevitably missed in the photos.

Unlike the exploration of patterns from the first PCs presented above,
all further analyses more rigorously assess the congruence of 2D and
3D data in the full shape spaces. Correlations of shape distances, RV
coeflicients and correlations of VCV produce similar results (Tab. 1).
In all instances, using any of the three statistics, the highest congruence
is between 3D data and 2D photos of mandibles (ca. 0.8 or higher) and
the lowest congruence is found in the ventral cranium (ca. 0.6). All
other datasets have intermediate degrees of similarity (ca. 0.7).

Measuring the strength of association between 3D and 2D data using
correlational approaches is a step forward to numerically assess TTD.
However, one is left with crude numbers that have to be subjectively
interpreted to decide whether 2D are or are not adequately accurate as
a proxy for 3D structures. To overcome this limitation, the next section
presents and discusses the results of the new approach.

Analysis Il: comparison of 2D and 3D data in the same
shape space and ANOVA test (“new’ approach)

Results of the ANOVA for size are presented in Tab. 2. This shows that
in all structures and views, individual size variation is significantly lar-
ger than TTD error and always explains more than 95% of variance in
the data. This is consistent with the high-correlations and the similarit-
ies in the box-plots reported in the previous section. The ANOVA thus
strengthens the conclusion that estimates of size in 2D are generally
very accurate and closely mirror 3D estimates. In fact, size data could
also be mean-centered, using the same method and reasoning as for
shape (i.e., that relative accuracy in results is more important than ab-
solute accuracy). However, size variation was (and probably is in most
datasets) so large compared to the total TTD error that is operation is
unlikely to make a difference.

Mean-centred shape data after a common superimposition also show
that individual variation is highly significant relative to TTD error in
all structures and views, and it explains between 80% and 90% of total
variance (Tab. 3). This suggests that TTD error is negligible not only
in relatively flat mandibles, but also in highly three-dimensional crania.
The error, however, is about 10% in mandibles (slightly more than 10%
in the less accurate scans) but appreciably larger in crania, where it
accounts for about 20% of total variance.

Phenograms of mean centred shapes (shown in Fig. 7 for mandibles
and ventral crania only) show that in 85.0% of cases the 2D mandibu-
lar data of a specimen clusters together with the corresponding 3D de-
scription of the same individual. This is indicative of differences due
to TTD smaller than differences among individuals for the large major-
ity of specimens, which is consistent with the ANOVA results. How-
ever, only 59.2%, 55.1% and 36.7% of respectively ventral, dorsal and
lateral cranial data performed similarly well. Thus, despite highly sig-
nificant ANOVAs, cranial data are clearly less well approximated in
2D than mandibles. This is expected, as crania are more complex and
three-dimensional than mandibles. It is, in contrast, less obvious why,
despite the slightly larger error in ventral crania, their phenogram is
more accurate in terms of clustering together 2D and 3D replicas. It is
hard to say why this happens but one might be tempted to speculate that
it is related to the larger number of landmarks in the ventral cranium,
which reduce the probability that 2D and 3D data are mismatched.

Conclusions and recommendations

All approaches are in good agreement in suggesting that TTD is small
for size and generally negligible. Also, the battery of analyses per-
formed in this study consistently indicates that 2D marmot mandibu-
lar data are generally accurate and, for shape, photos perform slightly
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Figure 7 — Phenograms (UPGMA, Euclidean distances) of (a) mandibles and (b) ventral
crania using mean-centered data after a common superimposition: numbers indicating
specimen identity are shown in black for 3D (both mandibles and crania), grey for 2D
photos (both datasets) and light grey for 2D scans (only mandibles).

better (higher correlations of 3D-2D data; smaller TTD error in the
ANOVA) than scans. Cranial data, in contrast, provide less clear con-
clusions. The ANOVA does indicate that the TTD error is negligible
relative to cranial sample variation. However, TTD accounts for about
20% of total variance. To help scaling this percentage in relation to
observed variability in nature, one could consider that Nagorsen and
Cardini (2009) reported that interspecific differences in mandibular
shape among species of North American marmots account for about
13% to 36% of total shape variance. On average, therefore, TTD error
in cranial data may be about as large as differences among closely re-
lated species (assuming that interspecific differences in crania mirror
those seen in mandibles). Patterns, correlational analyses and pheno-
grams all suggested that the TTD error is indeed quite large in crania
and the congruence of 2D and 3D data modest. Thus, it may be pos-
sible to use 2D photos to study marmot crania. However, as they are
highly three-dimensional, there will be a degree of inaccuracy, which
makes the 2D approximation likely unsuitable for intra-specific ana-
lyses. Even when 2D cranial studies are at supra-specific level, they
might require cautious interpretations and a clear warning to readers
about potential inaccuracies. This is something that clearly applies
to my earlier studies using 2D cranial data on marmots (references in
Cardini et al., 2007). In those studies I often did not have the 3D data
to test TTD and certainly did not know back then how to do it convin-
cingly. I must therefore now issue a “post-publication” warning that
all those analyses should be interpreted with a good degree of caution.
This warning mainly concerns inter-specific relationships between less
distinctive species, as large differences such as the remarkable diver-
gence in the youngest living marmot population, that of the highly en-
dangered Vancouver Island marmot (Marmota vancouverensis), have
been confirmed in multiple studies including several 2D analyses of
mandibles (Cardini, 2003; Nagorsen and Cardini, 2009; Cardini et al.,
2009) as well as 3D studies of cranial data (Cardini et al., 2007).
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In interpreting the magnitude of the TTD error in all datasets one
should also bear in mind that its estimate in this study also includes po-
sitioning and digitization errors. Potentially these components could be
individually quantified by repeating each step of the data collection at
least twice. For instance, for the 3D data, crania or mandible should be
repositioned and digitized twice in each position. For readers interested
in this, Arnqvist and Martensson (1998) provide an almost exhaustive
list of potential sources of errors and Viscosi and Cardini (2011) fur-
ther discuss this point and exemplify how to partition different sources
of variance in a multivariate ANOVA.

The issue of the relative importance of different sources of error was
raised also by a reviewer, who remarked that “it would be really inter-
esting to see a comparison of TDD error relative to measurement error,
which could be obtained by repeated measurements of specimens ...,
as a way of understanding the relative magnitudes of these two types of
error”. As anticipated, this is an important suggestion and something
that can be easily incorporated in the study design. Morphol, for in-
stance, allows to partition two different sources of error: one could use
TTD as the first one and positioning and digitization error (POSDIG)
as the second one. This could not be done in this study, however, as
replicas were not available within each dataset (2D or 3D).

It seems unlikely that POSDIG is a source of measurement error as
large as that due to the 2D flattening of a 3D structure. This is not only a
reasonable expectation, unless one has a problematic protocol for data
collection which leads to a very big POSDIG. It is also suggested by the
mandible analysis. In this analysis, 2D replicas are in fact available, as
both photos and scans were used. Thus, these data provide an estimate
of POSDIG at least in 2D. This estimate is inflated, because it contains
a third source of error, which is the different device (i.e., a camera or a
flat-bed scanner) used to obtain the images. Nevertheless, the pheno-
gram in Fig. 7a shows that in 16 out of 20 individuals (i.e., 80% of the
total), 2D replicas cluster together as “sisters”, while specimens meas-
ured using 3D landmarks are more distant in all but three cases. Indeed,
if we assume, with a degree of approximation, that sum of squares are
comparable in the TTD analysis and in a separate analysis (not shown)
I did to estimate digitization error (DIG) by re-digitizing both mand-
ible photos and scans, TTD (or, better, TTD minus DIG) is 3-4 times
larger than DIG for shape and 660 times bigger for size.

Similar exploratory comparisons of TTD and POSDIG (or just DIG)
could not be done for cranial data. However, in cranial data, TTD was
relatively larger than in mandibles, whereas POSDIG is likely to be
the same. Thus, it does seem that, when 2D images of 3D structures
are analysed, TTD is the main source of error, although other sources
contribute and the different magnitudes could be easily estimated, as
long as replicas are available within both 2D and 3D data.

There is another aspect of this study, and more precisely of the AN-
OVA, on which I would like to recommend a degree of caution. This is,
however, not specific to this type of analysis and actually has a broader
relevance in all tests using Procrustes shape data or more generally data
from which some information has been removed. Indeed, this is al-
ways the case with Procrustes shape coordinates, as they are obtained

by standardizing size and minimizing positional (translation and rota-
tion) differences. This introduces a redundancy in the shape coordin-
ates so that the real number of informative dimensions (the degrees of
freedom — df) is actually less than the number of variables. If the stat-
istical software used for a parametric test cannot “see” the redundancy,
it might incorrectly compute df and therefore produce unreliable p val-
ues. A simple way to avoid this potential issue is to perform resampling
tests using shape distances, as in the permutational version of the AN-
OVA employed in this study. Another option is to perform paramet-
ric tests on the matrix of all PCs with non-zero eigenvalues (i.e., vari-
ances). This is exactly the same information as in the original shape
coordinates but, by removing PCs with zero variance, uninformative
dimensions are discarded and df correctly correspond to the number
of variables. This option, unfortunately, is not available in MorphoJ
Procrustes ANOVA, which only allows to perform the test using shape
coordinates. However, because Morphol is designed to analyse Pro-
crustes shape data, it will likely compute df and p values correctly.
Users should, nevertheless, quickly check that this is the case. This
is easily done by comparing df computed in the shape Procrustes AN-
OVA in Morphol, and divided by either sample size /N (error term) or
N — 1 (individual term), to the number of PCs with non-zero eigenval-
ues for the same data: these numbers should be exactly the same. If not,
at least for the isotropic model, one can manually correct the computa-
tions of the F ratio and look for its correct p value in a published F ratio
table. For instance, in the mandible dataset, a PCA of the regression
residuals produces 20 PCs with non-zero eigenvalues; the ANOVA in-
dicates 380 and 400 df respectively for the individual and error terms,
which, divided by 19 and 20 respectively, gives 20, as expected if all
computations are correct.

To summarize, TTD can and should be assessed at least preliminary
in a 2D study of 3D structures. This recommendation does not add any-
thing to what Roth (1993) had already rightly and convincingly argued
more than 20 years ago, an advice I myself neglected to follow. How-
ever, now the understanding of Procrustes shape data is much deeper
than in the early days of GMM applications to biology (Adams et al.,
2013). Thus, I have presented a variety of approaches to assess TTD
and suggested a way to bring 2D and 3D data into the same shape space
for a more powerful comparison, which includes a statistical test. These
methods are fairly simple and at least in their parametric version can be
easily performed largely in Morphol. In practice, one simply needs at
least a subsample, representative of the variation expected in a study,
for which both 2D and 3D data are available. Data availability could
be the main obstacle to a routine application of TTD assessment. In-
deed, despite technological progresses, 3D data are still more expensive
and less easy to access especially in developing countries and countries
with a chronic lack of funding for basic research. However, 3D data can
now be acquired using inexpensive photogrammetry. This is nicely
exemplified by the simplified but pioneering protocol of Fadda et al.
(1997), and is becoming more popular, accurate and achievable thanks
to cheap digital cameras and new software (Falkingham, 2012; Katz
and Friess, 2014). Alternatively, one might be able to reconstruct, with

Table 2 — ANOVA testing inter-individual variation vs TTD differences in size.

MSQ F R**

3D vs. 2D SSQ df P (10000 perm.) P (param.)

ma photos individuals 562.3 19 29.5942 26.546 96.2% 0.0001 0.0001
error 22.3 20 1.1148 0.038

ma scans individuals 571.8 19 30.0969 54.373 98.1% 0.0001 0.0001
error 11.1 20 0.5535 0.019

dc photos individuals  3221.6 48 67.116 40.432 97.5% 0.0001 0.0001
error 81.3 49 1.66 0.025

Ic photos individuals 2181.6 48 45.45 49.696 98.0% 0.0001 0.0001
error 44.8 49 0.915 0.020

ve photos individuals  4808.6 48 100.178 473.760  99.8% 0.0001 0.0001
error 10.4 49 0.211 0.002

* Expressed as percentage of variance explained by individuals.
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Table 3 — Common shape space-mean centred data ANOVA testing inter-individual variation vs. TTD differences in shape.

3D vs. 2D SSQ df MSQ F R?* P(10000 perm.) P (param.)

ma photos** individuals  0.060583 380 0.000159 9.418  90.0% 0.0001 0.0001
error 0.006771 400 0.000017

ma scans™ individuals  0.065236 380 0.000172  7.350  87.5% 0.0001 0.0001
error 0.009343 400 0.000023

dc photos** individuals  0.077482 960 0.000081  4.720  82.2% 0.0001 0.0001
error 0.016757 980 0.000017

Ic photos** individuals  0.073507 672 0.000109 4.456 81.4% 0.0001 0.0001
error 0.016839 686 0.000025

ve photos individuals  0.066257 2544  0.000026 4.132  80.2% 0.0001 0.0001
error 0.016370 2597  0.000006

* Expressed as percentage of variance explained by individuals.
- Morphol provides also parametric tests using the Pillai’s trace and the multivariate approach described by Klingenberg et al. (2002),

which does not require isotropic variation, when sample size is large enough relative to the number of shape variables. This was the

case in all datasets except the ventral cranium. For these data, Pillai’s trace was always larger than 9 and p<0.0001.

some effort, 3D data using linear distances (Monteiro et al., 1997) and
techniques related to the truss method (Strauss and Bookstein, 1982),
which is implemented in Morpheus et al. (Slice, 1999). %
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