

Identifying the optimal sampling design for the inventorying and monitoring of medium- and large-sized mammals

Fábio de Souza Mattos¹, William Carvalho^{2,3}, Renato Richard Hilário¹

¹Post-Graduate Program in Tropical Biodiversity, Federal University of Amapá

²Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain

³Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

William Carvalho - 0000-0003-2518-9148

Renato Richard Hilário - 0000-0002-0346-0921

Abstract:

This study aims to identify optimal sampling designs for the inventory and monitoring of medium- and large-sized mammals, considering different biodiversity dimensions (taxonomic, functional, and phylogenetic) in the Southern Brazilian Amazon. We established three line transects each 3 km long, and three camera trap grids, each with six cameras, totaling 176 kilometers walked and 4,914 camera trap-days. We defined fixed and variable costs associated with each method. We sought to identify the sampling arrangement that yielded the highest possible α -diversity at the lowest possible cost (i.e., inventory efficiency), and the combination of methods that minimized bias in recording β -diversity while also minimizing costs (i.e., monitoring efficiency). Camera traps detected 26 species, of which 16 were exclusive to this method. Line transects resulted in detection of 16 species, six of which were exclusive (all arboreal). It was generally not possible to identify a single sampling scheme that yielded higher diversity or lower bias at lower costs. However, it was clear that adding line transect sampling units increased costs without improving diversity or bias results. Then, for the inventory of functional and phylogenetic diversity and for monitoring taxonomic, functional, and phylogenetic diversity, the optimal sampling design involves the exclusive use of camera traps. For a taxonomic diversity inventory the optimal sampling scheme requires a combination of camera traps and line transects. We did not sweep the transects or search for tracks and other signs in our line transect surveys, which reduced the method's effectiveness in detecting some species. The superior cost-effectiveness of camera traps can be related to improvements in camera trap technology and reductions in their cost, although given their lower efficiency to detect arboreal species, including some effort in line transects may be necessary.

Keywords: Amazon, Camera traps, Functional diversity, line-transects, Neotropical mammals, Phylogenetic diversity.

Received: 2025-09-12

Revised: 2026-01-21

Accepted: 2026-02-04

Final review: 2025-10-03

Short title

Optimal sampling design for mammals

Corresponding author

Renato Richard Hilário

Post-Graduate Program in Tropical Biodiversity, Federal University of Amapá; email: renatohilario@unifap.br

Identifying the optimal sampling design for the inventorying and monitoring of medium- and large-sized mammals

Fábio de Souza Mattos¹, William Douglas Carvalho^{1,2,3}, Renato Richard Hilário^{1,*}

¹ Post-Graduate Program in Tropical Biodiversity, Federal University of Amapá

² Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.

³ Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain

* Corresponding author: renatohilario@unifap.br (Renato Richard Hilário)

Running title: Optimal sampling design for mammals

Abstract

This study aims to identify optimal sampling designs for the inventory and monitoring of medium- and large-sized mammals, considering different biodiversity dimensions (taxonomic, functional, and phylogenetic) in the Southern Brazilian Amazon. We established three line transects each 3 km long, and three camera trap grids, each with six cameras, totalling 176 kilometers walked and 4,914 camera trap-days. We defined fixed and variable costs associated with each method. We sought to identify the sampling arrangement that yielded the highest possible α -diversity at the lowest possible cost (i.e., inventory efficiency), and the combination of methods that minimized bias in recording β -diversity while also minimizing costs (i.e., monitoring efficiency). Camera traps detected 26 species, of which 16 were exclusive to this method. Line transects resulted in detection of 16 species, six of which were exclusive (all arboreal). It was generally not possible to identify a single sampling scheme that yielded higher diversity or lower bias at lower costs. However, it was clear that adding line transect sampling units increased costs without improving diversity or bias results. Then, for the inventory of functional and phylogenetic diversity and for monitoring taxonomic, functional, and phylogenetic diversity, the optimal sampling design involves the exclusive use of camera traps. For a taxonomic diversity inventory the optimal sampling

30 scheme requires a combination of camera traps and line transects. We did not sweep the
31 transects or search for tracks and other signs in our line transect surveys, which reduced the
32 method's effectiveness in detecting some species. The superior cost-effectiveness of camera
33 traps can be related to improvements in camera trap technology and reductions in their cost,
34 although given their lower efficiency to detect arboreal species, including some effort in line
35 transects may be necessary.

36 **Keywords:** Camera traps, line-transects, Neotropical mammals, Amazon, Functional
37 diversity, Phylogenetic diversity

38 INTRODUCTION

39 Faunal inventories aim to record the diversity of a given location with the highest level of
40 completeness as possible, while faunal monitoring is conducted to detect changes in
41 community composition over time (Cardoso et al. 2024a). Inventories are essential for
42 understanding local biodiversity and identifying areas of higher or lower species richness,
43 thus providing a foundation for conservation decision-making (Silva-Dias et al. 2019). On the
44 other hand, monitoring allows researchers to track the effects of environmental changes or
45 interventions on biodiversity. In this context, efficient inventories seek to maximize recorded
46 α -diversity at the lowest possible cost (Cardoso et al. 2024a, Burt et al. 2021, Carvalho et al.
47 2016, Garden et al. 2007, Gaidet-Drapier et al. 2006). Conversely, monitoring efforts require
48 comparing community composition over different time periods (i.e., β -diversity), and
49 therefore aim to minimize the discrepancy between true and sampled β -diversity (i.e.,
50 minimize bias in recording β -diversity – Cardoso et al. 2024a). True β -diversity represents
51 differences in assemblage composition among sites estimated by pooling data from all
52 sampling units, i.e. the β -diversity obtained under intensive sampling. Bias is calculated as the
53 difference between estimates obtained from subsets of sampling units and those derived from
54 the complete dataset (Cardoso et al. 2024a).

55 Although inventories and monitoring have distinct objectives, they are often carried out using
56 similar methods for each taxonomic group (e.g., Welbourne et al. 2015, Garden et al. 2007).
57 The existence of numerous methods used in faunal inventories and monitoring highlights the
58 need to understand the limitations and advantages of each, supporting the selection of the
59 most appropriate approaches for each situation (Burt et al. 2021, Carvalho et al. 2016, Gaidet-

61 Drapier et al. 2006). The primary methods employed in the inventory and monitoring of
62 medium- and large-sized mammals include camera trapping, line transect surveys, and the
63 identification of tracks and other signs (e.g., scratches, vocalizations, burrows, hair, odors –
64 Meek et al. 2012; Cullen & Rudran 2006). Camera trapping involves placing cameras at
65 predefined locations to record the species present and gathering information on their spatial
66 distribution and relative abundance (Kéry 2011). Line transect surveys involve walking along
67 predefined paths and recording sightings, allowing the assessment of species distribution
68 along the surveyed or monitored area (Buckland et al. 2015). This method also allows for the
69 concurrent recording of tracks and other mammalian signs.

70 The characteristics of camera traps and line transects make each more suited for detecting
71 species with different traits. While camera traps are more effective for detecting elusive, rare,
72 and nocturnal animals (Benchimol 2016), line transects are more advantageous for sampling
73 arboreal and diurnal fauna (Wix & Reich 2019, Carvalho et al. 2016, Roberts et al. 2016,
74 Trolle et al. 2008). Thus, it is common for both methods to be used complementarily to
75 improve species detection (Ponce-Martins et al. 2022, Moore et al. 2020). However, the
76 simultaneous use of both methods often depends on the available budget and time for
77 fieldwork. It is important to consider that camera traps remain relatively expensive due to
78 their initial acquisition costs and potentially high maintenance and logistical expenses (Djekda
79 et al. 2020, Lyra-Jorge et al. 2008, Silveira et al. 2003). Line transects, in turn, require more
80 field effort, which can represent a significant cost depending on the number of days in the
81 field (Carvalho et al. 2016). Therefore, to define an optimal allocation of effort between the
82 two methods in inventories or monitoring of mammals, it is necessary to balance species
83 detectability and the associated costs of each method.

84 Biological diversity can be assessed through multiple dimensions, including taxonomic,
85 functional, and phylogenetic diversity (Chao et al. 2014). Taxonomic diversity is the most
86 commonly used dimension, but it disregards ecological and evolutionary differences among
87 species (Cardoso et al. 2024b; Chao et al. 2014, Purschke et al. 2013). Conversely, functional
88 and phylogenetic diversity weight species according to their ecological traits and evolutionary
89 lineages, respectively (Cardoso et al. 2024b, Chao et al. 2014). Given that camera traps and
90 line transects differ in the species profile they tend to detect (Carvalho et al. 2016), these
91 differences are expected to influence functional and phylogenetic diversity outcomes. For
92 example, the concentration of line transect records on diurnal animals, and of camera trap

94 records on terrestrial species (Moore et al. 2020, Carvalho et al. 2016) limits the functional
95 diversity captured by these methods. Additionally, Neotropical primates—a speciose lineage
96 of mammals—are predominantly arboreal (Paglia et al. 2012), which restricts the
97 phylogenetic diversity captured by camera traps at ground level, as these devices are generally
98 inefficient at detecting arboreal species. Thus, the optimal allocation of mammal sampling
99 methods may vary depending on the assessed biodiversity dimension.

100 We sought to identify optimal sampling designs for the inventory and monitoring of medium-
101 and large-sized mammals, considering different biodiversity dimensions (taxonomic,
102 functional, and phylogenetic). The ultimate goal is to inform future research and improve
103 sampling efficiency, i.e., maximize the number of species detected or minimize the bias in
104 comparing species composition, while minimizing costs.

105 MATERIALS AND METHODS

106 Study Area

107 The study was conducted in the area of the Rondon II Hydroelectric Power Plant (Rondon II
108 HPP), located in the state of Rondônia, in the southern Brazilian Amazon. The region is
109 predominantly covered by Seasonal Semideciduous Forest and lies within the transition zone
110 between the Amazon and Cerrado biomes, which influences its fauna and flora (Radam Brasil
111 1978). The Rondon II reservoir spans 4,930 hectares and is surrounded by approximately
112 11,000 hectares of forest (Rondônia 2002), contiguous with other forested areas in the
113 surrounding landscape (Fig. 1). In well-preserved areas, the forest canopy can exceed 20
114 meters in height and includes a well-developed understory (Mattos et al. 2023). The region's
115 soils are classified as hydromorphic quartzarenic with sandy texture and low relief (IBGE
116 2006). According to Köppen's classification, the local climate is Aw (tropical wet and dry
117 climate with a dry winter – Kottek et al. 2006, IBGE 2002). The dry season lasts
118 approximately three months, from June to August, while the rainy season generally spans
119 from September to May (IBGE 2002). Average monthly precipitation during the driest
120 months is below 50 mm, with total annual precipitation ranging from 1,400 to 2,600 mm.
121 Annual mean temperatures vary from 21 to 37°C (Rondônia 2002).

123 **Data Collection**124 *Line Transects*125 We established three line transects, each with 3 Km, within the study area (Fig. 1). The
126 transects were established in November 2017 to enable fauna monitoring at the Rondon II
127 HPP, and their number and length were defined according to operational limitations at the
128 locations where they were established and by the size constraints of the study site. Transects
129 were cleared once or twice a year to remove shrubs growing along the trails and fallen
130 branches and trees. However, the trails were not swept due to the high cost of this activity.131 Transects were surveyed during 4-day field campaigns conducted two to five times per year
132 between July 2019 and March 2025. Surveys were carried out by two observers walking at a
133 constant speed of 1.5 km/h, searching for direct sightings of mammals. From 2019 to 2023,
134 each transect was walked only once per field campaign. In the five campaigns conducted in
135 2024 and 2025, transects were walked between one and three times per campaign. In these
136 cases, once a transect was sampled, it was not surveyed again for at least 48 hours to allow for
137 the natural repositioning of wildlife and to ensure independence of records across different
138 days on the same transect. This resulted in a total sampling effort of 222 kilometers walked.139 *Camera Traps*140 Around each transect, we installed a rectangular grid (1 x 3 km) of camera traps (Tasco Low
141 Glow 12MP Trail Camera, with infrared flash and a 1-second trigger speed), with six camera
142 traps placed 1 km apart and approximately 500 meters from the trail (three on each side – Fig.
143 1). The distance between camera traps was chosen to ensure the independence of recorded
144 data (e.g., Brandão et al. 2025). Cameras were mounted on tree trunks approximately 40
145 centimeters above the ground, in locations selected to maximize mammal detection, such as
146 along natural animal paths. Cameras were programmed to operate 24 hours per day, and
147 records of the same species at the same camera were considered independent if they occurred
148 more than one hour apart (Tobler et al. 2008). Across the 18 camera trap sites, we obtained a
149 sampling effort of 4,914 trap-days over an eight-month sampling period (from May 2024 to
150 February 2025). However, a smaller effort (4,320 trap-days) was used in the analysis due to
151 unbalanced sampling between points.152 Transects were surveyed over a longer period (6 years) than camera traps (8 months), which
153 may be a problem if the mammal assemblage varied during this time. To account for this
154 temporal mismatch, we tested whether the number of species recorded per transect differed

156 among the six years of transect surveys. Since we did not find evidence of significant changes
157 in the assemblage (Permutational ANOVA: $F=2.488$; $p=0.078$), this mismatch does not
158 represent a problem for our analyses.

159 *Cost Definition for Methods*

160 We categorized the costs associated with each method into fixed and variable costs (Tab. 1,
161 e.g., Lyra-Jorge et al. 2008). Fixed costs were defined as those that do not vary with temporal
162 replication of sampling (e.g., equipment purchase, trail establishment, etc.). Variable costs
163 vary proportionally with the number of sampling units used in the study (e.g., transportation
164 within the study area, researcher accommodation and meals, researcher per diems, vehicle
165 rental, and fuel – Tab. 1). Costs were initially estimated in Brazilian reais (R\$) and
166 subsequently converted to U.S. dollars (US\$) using an exchange rate of R\$1.00 = US\$5.97 (as
167 of March 17, 2025).

168 **Statistical Analyses**

169 In this study, to identify the optimal sampling design for inventories, we used the *optim.alpha*
170 function (Cardoso et al. 2024a) of the package ‘BAT’ (Cardoso et al. 2015), which seeks to
171 identify the sampling arrangement that yields the highest possible α -diversity at the lowest
172 possible cost. According to the method characteristics, the sampling units of the different
173 methods do not need to be equivalent. The size of the sampling unit represents the size of the
174 increment in cost and diversity/bias when a sampling unit is added to the sample (Cardoso et
175 al. 2015). Therefore, sampling units should be relatively small to allow a fine-grained
176 evaluation, while still being meaningful, i.e., representing what can typically be achieved in a
177 field campaign. We defined sampling units as 90 camera trap-days, i.e., 30 days of sampling
178 in a half-grid (3 camera traps), and 18 kilometers walked on transects, i.e., one 4-day
179 sampling campaign across the three transects. Although replication of camera traps can be
180 achieved either by increasing the number of devices or by extending their deployment time in
181 the field, in this study we considered only temporal replication. Thus, fixed costs were based
182 on the purchase value of three camera traps, regardless of the number of sampling units.

183 To identify the optimal design for mammal monitoring, we used the *optim.beta* function
184 (Cardoso et al. 2024a), which identifies the combination of methods that minimizes bias in
185 recording β -diversity while also minimizing costs. Although monitoring aims to assess

187 changes in the community over time, the evaluation of the sampling effort that minimizes bias
188 in differences between surveys can be carried out either spatially or temporally. Therefore, for
189 this analysis, β -diversity was assessed as the Jaccard distance between the three transects and
190 between the three camera trap grids, and we considered each sampling unit as one transect
191 surveyed four times (i.e., 12 km), and 30 days of sampling within a grid of six camera traps
192 (i.e., 180 camera trap-days). Note that the sampling units differ from those used in the
193 inventory analysis, because in the monitoring analyses we need to assess beta diversity
194 between transects or camera-trap grids. Both the inventory and monitoring analyses were
195 conducted using taxonomic, functional, and phylogenetic diversity.

196 Optimal sampling arrangements were identified using plots that relate diversity (inventory) or
197 1 – bias (monitoring) to the cost associated with each sampling arrangement. Each point in
198 these plots represents a combination of sampling units from the different methods. To identify
199 the number of sampling units from each method represented by each point, we used the
200 function ‘identify’. Identifying the optimal design is more straightforward when there is a
201 clear inflection point beyond which increasing sampling costs does not lead to a substantial
202 increase in diversity or 1 – bias. However, when diversity or 1 – bias increases gradually with
203 sampling cost, defining an optimal design becomes more subjective.

204 To obtain the optimal sampling design for inventories and monitoring of medium- and large-
205 sized mammals based on phylogenetic diversity, we generated a consensus phylogenetic tree
206 of the species recorded in this study using the VertLife.org database (Upham et al. 2019). For
207 the functional dimension, we used functional data related to diet (proportion of diet consisting
208 of invertebrates, fish, vertebrates, carrion, fruits+seeds, nectar, and leaves), activity period
209 (whether the animal is active during the day, night, or twilight), and body size (log-
210 transformed). These data were obtained from Wilman et al. (2014). Based on these data, we
211 created a distance matrix between species using the *gawdis* function of the package ‘gawdis’
212 (de Bello et al. 2021), specifying that the diet and activity period variables were grouped. We
213 then built a functional tree based on the resulting distance matrix using the *tree.build* function
214 of the package ‘BAT’ (Cardoso et al. 2015). All the analyses were performed in the software
215 R (R Core Team 2025).

RESULTS

Considering both methods used, we recorded 32 species of medium- and large-sized mammals in the study area (Tab. 2). Camera traps detected 26 species, of which 16 were exclusive to this method. Among the species recorded exclusively by camera traps, most were terrestrial, but scansorial species (such as the South American Coati and the Brazilian Squirrel) and arboreal species (e.g., the Black-tailed Marmoset) were also detected (Tab. 2). In contrast, the line transect method detected 16 species, 6 of which were exclusive to this method—five primates species, and the Brazilian Porcupine (Tab. 2).

Regarding the taxonomic diversity inventory, the graph shows a sequence of ascending curves from left to right (Fig. 2). On the far left of the graph, the curve that stands out most includes only sampling units composed of camera traps. The addition of line transect sampling units shifts the curves to the right, increasing the cost and correspondingly increasing the resulting diversity. There is a gradual increase in diversity with sampling cost, such that within the sampling limits of this study, it is not possible to objectively define an optimal sampling design for the inventory of taxonomic diversity of medium- and large-sized mammals.

The same initial ascending trend is observed for functional diversity inventory, with the curve on the far left composed of camera-trap-only sampling units. Adding line transect units again shifts the curve to the right, indicating increased cost. However, unlike taxonomic diversity, the corresponding increase in functional diversity is comparatively small. Thus, the optimal sampling design for functional diversity inventory involves using only camera traps, although the decision regarding the number of cameras remains somewhat subjective. The curve stabilizes, indicating that beyond a certain number of camera trap units, the cost increases faster than the gain in diversity. Therefore, the optimal number of sampling units lies between 720 and 3600 camera trap-days, at a cost ranging from US\$ 6,751.01 to US\$ 32,714.85 (Fig. 2).

For phylogenetic diversity, the pattern is similar to that observed for functional diversity. The graph also shows an ascending curve on the left composed of sampling units using only camera traps. This curve stabilizes more quickly, suggesting that the optimal sampling design for the inventory of phylogenetic diversity requires less sampling effort and lower cost: between 450 and 1440 camera trap-days, with a corresponding cost ranging from US\$ 4,316.90 to US\$ 13,241.97 (Fig. 2).

249 Regarding monitoring, for all biodiversity dimensions (i.e., taxonomic, functional, and
250 phylogenetic), we observed a sequence of points on the left side of the graph that show an
251 increase in the 1 - bias ratio as the number of camera traps increases, without including any
252 transect sampling units. Adding transect units shifts the curve to the right—i.e., it increases
253 cost—with only a minor improvement in the 1 - bias ratio. Therefore, the optimal monitoring
254 design can also be defined as one relying solely on camera traps, although the precise number
255 of cameras used remains a subjective choice, considering that increasing the number of
256 cameras reduces bias. The costs associated with the optimal sampling schemes for monitoring
257 are similar between taxonomic, functional, and phylogenetic diversities (Fig. 2). Furthermore,
258 the monitoring costs are lower than those required for inventorying (Fig. 2).

259 DISCUSSION

260 We showed that for the inventory of functional and phylogenetic diversity of medium- and
261 large-sized mammals and for monitoring taxonomic, functional, and phylogenetic diversity,
262 the optimal sampling design involves the exclusive use of camera traps. Only in the case of
263 taxonomic diversity inventory did the optimal sampling scheme require a combination of
264 camera traps and line transects.

265 The superior cost-effectiveness of camera traps in recording mammal species can be
266 attributed to several factors. First, the cost of camera traps has declined over the years, while
267 the quality of the devices has improved in terms of sensor sensitivity, trigger speed, and
268 image resolution (Rovero et al. 2013, Swann et al. 2011). This has led to lower fixed costs
269 and increased efficiency in mammal detection (Palencia et al. 2022, Rovero et al. 2013,
270 Swann et al. 2011). Furthermore, the extended battery life and high-capacity memory cards
271 reduce variable costs by decreasing the need for frequent field visits (Swann et al. 2011). As a
272 result, both fixed and variable costs of camera trapping have become lower than those of line
273 transects, as our results showed. It is also worth noting that the camera trap model used in this
274 study (Tasco Low Glow 12MP Trail Camera) had a relatively low cost (US\$ 50.36 per unit,
275 including import taxes) compared to other models, which may have further favored camera
276 traps in our cost-effectiveness analysis.

Our results contrast with those of previous studies conducted in Neotropical ecosystems similar to our study area. For example, studies have found greater efficiency for line transects (Silveira et al. 2003), similar cost-effectiveness between camera traps and line transects (Carvalho et al. 2016), or the need for a combination of methods (Munari et al. 2011). Several factors may explain these differences. Notably, Silveira et al. (2003) and Munari et al. (2011) did not incorporate sampling costs into their evaluations. Carvalho et al. (2016) was carried out on already established transects and did not consider the cost of establishing them, which can be substantial when trails are not already present in the study area. Additionally, improvements in camera trap technology and reductions in their cost since those studies were published help explain the divergent findings. Finally, we did not sweep the transects or include the search for tracks and other signs in our line transect surveys, which reduced the method's effectiveness in detecting some species. In fact, sign detection is essential for increasing the effectiveness of line transect surveys (Carvalho et al. 2016, Silveira et al. 2003) and including sign detection in our analyses could have qualitatively altered the results. On the other hand, the ongoing development of camera trap technology and continued cost reductions are likely to favor this method increasingly. This is supported by more recent studies, such as Djekda et al. (2020), which also found camera traps to be the most cost-effective method for sampling African mammals. Similarly, there has been ongoing development in the use of drones for species inventorying (Larsen et al. 2023). Such developments may expand their applications and reduce costs, potentially leading to improved cost-effectiveness in the future (Burke et al. 2019). Importantly, our results indicate greater cost-effectiveness of camera traps only for inventorying or monitoring purposes. The use of camera traps in studies with different objectives, such as estimating species density, is expected to result in substantially different cost-effectiveness trade-offs (e.g. Delisle et al. 2023).

The result for the taxonomic diversity inventory was the only one that indicated the need to combine line transects with camera traps. This finding is associated with the fact that six species—all arboreal—were recorded exclusively by line transects, as also demonstrated by other studies in the Neotropical region (e.g., Moore et al. 2020, Carvalho et al. 2016). Thus, the most favorable strategy for species inventories is to rely primarily on camera traps, while allocating some sampling effort to line transects to record arboreal species.

310 Taxonomic diversity is often the focus of mammal biodiversity studies (Xavier et al. 2023).
311 However, we showed that functional and phylogenetic diversity can be assessed at a lower
312 cost, due to the sharing of functional traits among species and because certain lineages include
313 species that are more easily detected than others. Indeed, camera traps were able to detect
314 some arboreal species—such as the Black-capped Capuchin Monkey, Golden-backed Squirrel
315 Monkey, and Black-tailed Marmoset—and recorded species from all mammalian orders and
316 15 out of the 18 families identified in this study. Therefore, despite their lower effectiveness
317 in detecting primates and other arboreal mammals (Srbek-Araujo & Chiarello 2005), camera
318 traps can still record these animals, supporting their high efficiency in functional and
319 phylogenetic diversity inventories.

320 We also found that monitoring medium- and large-sized mammals using only camera traps
321 provides the best cost-effectiveness. In contrast, Munari et al. (2011) recommended
322 combining multiple methods to monitor Amazonian mammals. Once again, it is important to
323 highlight that camera traps, when installed at ground level, are less effective at detecting
324 arboreal species (Srbek-Araujo and Chiarello 2005; Carvalho et al. 2016). Therefore, if the
325 monitoring objective targets arboreal mammals, it is necessary to include some effort in line
326 transects. However, if the goal is to assess changes in the composition of medium- and large-
327 sized mammal communities more broadly and with minimal cost, then relying exclusively on
328 camera traps is the most appropriate approach. Another possible strategy is installing camera
329 traps in the canopy. This approach is more challenging than installing camera traps at ground
330 level, due to undesired triggers and higher installation costs. Although recent advances have
331 reduced these problems, camera traps in the canopy still seem to require higher costs per
332 species recorded than those at ground level (Goebel et al. 2025). A formal comparison of the
333 costs of using canopy camera traps and line transects is necessary to determine which method
334 is more cost-effective.

335 Monitoring costs were lower than inventory costs, which is both expected and necessary,
336 given the requirement for temporal replication in monitoring (Cardoso et al. 2024a). Sampling
337 with up to 2880 camera trap-days (i.e., the total effort employed in our monitoring analysis)
338 appears sufficient to detect temporal variation in large mammal community composition.
339 While this sampling effort may require an important initial investment, the low cost of
340 temporal replication with camera traps makes it feasible for long-term studies (Djekda et al.
341 2020, Silveira et al. 2003).

Finally, our findings reflect, to some extent, the biodiversity characteristics of our study area. With eight primate species and the Brazilian Porcupine, the study site is particularly rich in arboreal mammals, favouring sampling designs that incorporate line transects. In areas with fewer arboreal species, inventories and monitoring may be even more efficiently conducted using only camera traps. On the other hand, including line transects may be advisable even for monitoring or for functional and phylogenetic diversity inventories in areas potentially harbouring a greater number of arboreal species. Besides the number of arboreal species, the balance between camera traps and line transects for mammal inventory and monitoring may also depend on the site's vegetation structure. For example, in open environments, the effectiveness of line transects may increase due to greater visibility. This increased visibility does not benefit camera traps, which typically detect animals only within a limited range (e.g., up to 30 meters). Thus, conducting similar analyses in regions with high arboreal mammal diversity is crucial to better elucidate the potential role of line transects in mammal inventory and monitoring under different ecological contexts.

ACKNOWLEDGEMENTS

We are thankful to Eletrogoes S.A. for the logistic support during fieldwork. FSM thanks CAPES for the PhD scholarship (Financing Code 001). RRH thanks CNPq (process 302928/2025-1). WDC was supported by “Ayudas para contratos Ramón y Cajal (RYC) 2023” {RYC2023-045231-I}, financed by MCIU/AEI/<https://doi.org/10.13039/501100011033> and by the FSE+. We thank the anonymous reviewers which helped us to improve this manuscript with their valuable comments.

REFERENCES

Benchimol, M., 2016. Medium and large-sized mammals. In: Larsen, T.H., (Ed.) Core standardized methods for rapid biological field assessment. Conservation International, Arlington, VA. 38-48.

Brandão, F.C., Carvalho, W.D., Duarte, H.O.B., Rosalino, L.M., Silva, C.R., Hilário, R.R., 2025. Fine-scale variation in the medium and large-sized mammal assemblage composition in

372 northeastern Amazon: drivers of β -diversity and species interactions. *Ecol. Res.* 40(4): 422-
373 436.

374 Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S., 2015. *Distance Sampling.*
375 *Methods and Applications*. Springer, Cham.

376 Burke, C., Rashman, M., Wich, S., Symons, A., Theron, C., Longmore, S., 2019. Optimizing
377 observing strategies for monitoring animals using drone-mounted thermal infrared cameras.
378 *Int. J. Remote Sens.* 40(2): 439-467.

379 Burt, C., Fritz, H., Keith, M., Guerbois, C., Venter, J.A., 2021. Assessing different methods
380 for measuring mammal diversity in two southern African arid ecosystems. *Mamm. Res.*
381 66(2): 313-326.

382 Cardoso, P., Rigal, F., Carvalho, J.C., 2015. *BAT–Biodiversity Assessment Tools*, an R
383 package for the measurement and estimation of alpha and beta taxon, phylogenetic and
384 functional diversity. *Methods Ecol. Evol.* 6(2): 232-236.

385 Cardoso P., Arnedo, M.A., Macías-Hernández, N., Carvalho, W.D., Carvalho, J.C., Hilário,
386 R., 2024a. Optimal inventorying and monitoring of taxonomic, phylogenetic and functional
387 diversity. *PLoS ONE* 19(7): e0307156.

388 Cardoso, P., Guillerme, T., Mammola, S., Matthews, T.J., Rigal, F., Graco-Roza, C., Stahls,
389 G., Carvalho, J.C., 2024b. Calculating functional diversity metrics using neighbor-joining
390 trees. *Ecography* 2024(7): e07156.

392 Carvalho, W.D., Rosalino, L.M., Adania, C.H., Esberárd, C.E.L., 2016. Mammal inventories
393 in seasonal neotropical forests: traditional approaches still compensate drawbacks of modern
394 technologies. *Iheringia: Ser. Zool.* 106: e2016005.

395 Chao, A., Chiu, C.H., Jost, L., 2014. Unifying species diversity, phylogenetic diversity,
396 functional diversity, and related similarity and differentiation measures through Hill numbers.
397 *Annu. Rev. Ecol. Evol. Syst.* 45(1): 297-324.

398 Cullen, L. Jr., Rudran, R., 2006. Transectos lineares na estimativa de densidade de mamíferos
399 e aves de médio e grande porte. In: Cullen, L. Jr., Valladares-Padua, C, Rudran, R. (Eds.)
400 *Métodos de estudos em biologia da conservação e manejo da vida silvestre*. Universidade
401 Federal do Paraná, Curitiba. 169-180.

402 de Bello, F., Botta-Dukát, Z., Lepš, J., Fibich, P., 2021. Towards a more balanced
403 combination of multiple traits when computing functional differences between species.
404 *Methods Ecol. Evol.* 12(3): 443-448.

405 Delisle, Z.J., McGovern, P.G., Dillman, B.G., Reeling, C.J., Caudell, J.N., Swihart, R.K.
406 2023. Using cost-effectiveness analysis to compare density-estimation methods for large-scale
407 wildlife management. *Wildl. Soc. Bull.* 47(2): e1430.

408 Djekda, D., Bobo, K.S., Hamadjida, B.R., Azobou, K.B.V., Ngouh, A., 2020. Camera trap is
409 low-cost for mammal surveys in long-term: comparison with diurnal and nocturnal surveys. *J.*
410 *Anim. Plant Sci.*, 46(1): 8149-8162.

412 Gaidet-Drapier, N., Fritz, H., Bourgarel, M., Renaud, P.C., Poilecot, P., Chardonnet, P., Coid,
413 C., Poulet, D., Le Bel, S., 2006. Cost and efficiency of large mammal census techniques:
414 comparison of methods for a participatory approach in a communal area, Zimbabwe.
415 *Biodivers. Conserv.* 15(2): 735-754.

416 Garden, J.G, McAlpine, C.A., Possingham, H.P., Jones, D.N., 2007. Using multiple survey
417 methods to detect terrestrial reptiles and mammals: what are the most successful and cost-
418 efficient combinations?. *Wildl. Res.* 34(3): 218-227.

419 Goebel, L.G.A., Bogoni, J.A., Oliveira, H.F.M., Ferreira, C.S., Santos-Filho, M., 2025. A new
420 arboreal suspension technique to strengthen the understanding of canopy ecological
421 interactions and dynamics. *Mamm. Res.* 70(1): 141-149.

422 IBGE, 2002. Mapa de clima do Brasil. 1st ed. Diretoria de Geociências do IBGE, Rio de
423 Janeiro, RJ.

424 IBGE, 2006. Pedologia (Estado de Rondônia): mapa exploratório de solos. 1st ed. Diretoria
425 de Geociências do IBGE, Rio de Janeiro, RJ.

426 Kéry, M. 2011. Species richness and community dynamics: a conceptual framework. In:
427 O'Connell, A.F., Nichols, J.D., Karanth, K.U. (Eds.). *Camera traps in animal ecology:*
428 methods and analyses. Springer, Tokyo. 207-231

430 Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-
431 Geiger climate classification updated. Meteorol. Z., 15: 259-263.

432 Larsen, H.L., Møller-Lassesen, K., Enevoldsen, E.M.E., Madsen, S.B., Obsen, M.T., Povlsen,
433 P., Bruhn, D., Pertoldi, C., Pagh, S., 2023. Drone with mounted thermal infrared cameras for
434 monitoring terrestrial mammals. Drones 7(11): 680.

435 Lyra-Jorge, M.C., Ciochetti, G., Pivello, V.R., Meirelles, S.T., 2008. Comparing methods for
436 sampling large- and medium-sized mammals: camera traps and track plots. Eur. J. Wildl.
437 Res., 54: 739-744.

438 Mattos, F.S., Alencar, T.B., Boyle, S.A., Fleck, G., Koolen, H.H.F., Pohlitz, A., Silva-Diogo,
439 O., Gusmão, A.C., Barnett, A.A., 2023. A Life in Fragments: The ecology, behavior, and
440 conservation of the recently described Parecis plateau titi monkey (*Plecturocebus parecis*).
441 Int. J. Primatol. 45(1): 176-202

442 Meek, P., Ballard, G., Fleming, P., 2012. An introduction to camera trapping for wildlife
443 surveys in Australia. Invasive Animals Cooperative Research Centre, Canberra.

444 Moore, J.F., Pine, W.E., Mulindahabi, F., Niyigaba, P., Gatorano, G., Masozera, M.K.,
445 Beaudrot, L., 2020. Comparison of species richness and detection between line transects,
446 ground camera traps, and arboreal camera traps. Anim. Conserv., 23(5): 561-572

447 Munari, D.P., Keller, C., Venticinque, E.M., 2011. An evaluation of field techniques for
448 monitoring terrestrial mammal populations in Amazonia. Mamm. Biol., 76:401-408.

450 Palencia, P., Vicente, J., Soriguer, R.C., Acevedo, P., 2022. Towards a best-practices guide
451 for camera trapping: assessing differences among camera trap models and settings under field
452 conditions. *J. Zool.*, 316(3): 197-208.

453 Paglia, A.P., Fonseca, G.A.B., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello, A.G.,
454 Leite, Y.L.R., Costa, L.P., Siciliano, S., Kierulff, M.C.M., Mendes, S.L., Tavares, V. C.,
455 Mittermeier, R.A., Patton J.L., 2012. Lista anotada dos mamíferos do Brasil. 2nd ed.
456 Occasional Papers in Conservation Biology 6. Conservation International, Arlington, VA.

457 Ponce-Martins, M., Lopes, C.K.M., Carvalho, E.A.R. Jr., Castro, F.M.R., Paula, M.J.,
458 Pezzuti, J.C.B., 2022. Assessing the contribution of local experts in monitoring Neotropical
459 vertebrates with camera traps, linear transects and track and sign surveys in the Amazon.
460 *Perspect. Ecol. Conserv.*, 20: 303–313.

461 Projeto RadamBrasil, 1978. Folha SC.20 Porto Velho. Departamento Nacional da Produção
462 Mineral, Rio de Janeiro, RJ.

463 Purschke, O., Schmid, B.C., Sykes, M.T., Poschlod, P., Michalski, S.G., Durka, W., Kühn, I.,
464 Winter, M., Prentice, H.C., 2013. Contrasting changes in taxonomic, phylogenetic and
465 functional diversity during a long-term succession: insights into assembly processes. *J. Ecol.*,
466 101(4): 857-866.

468 Roberts, T.E., Bridge, T.C., Caley, M.J., Baird, A.H., 2016. The point count transect method
469 for estimates of biodiversity on coral reefs: improving the sampling of rare species. PLoS
470 ONE, 11(3): e0152335.

471 Rondônia., 2002. Plano de uso e ocupação das águas e do entorno do reservatório da Usina
472 Hidrelétrica Rondon II: Plano Básico Ambiental. Eletrogóes S. A., Apidiá Planejamento
473 Estudos e Projetos Ltda., and Secretaria Estadual do Meio Ambiente, Pimenta Bueno, RO.

474 Rovero, F., Zimmermann, F., Berzi, D., Meek, P., 2013. Which camera trap type and how
475 many do I need? A review of camera features and study designs for a range of wildlife
476 research applications. *Hystrix* 24(2): 148–156.

477 Silva-Dias, A.M., Fonseca, A., Paglia, A.P., 2019. Technical quality of fauna monitoring
478 programs in the environmental impact assessments of large mining projects in southeastern
479 Brazil. *Sci. Total Environ.* 650: 216-223.

480 Silveira, L., Jácomo, A.T.A., Diniz-Filho, J.A.F., 2003. Camera trap, line transect census and
481 track surveys: a comparative evaluation. *Biol. Conserv.*, 114: 351-355.

482 Srbek-Araujo, A.C., Chiarello, A.G., 2005. Is camera-trapping an efficient method for
483 surveying mammals in Neotropical forests? A case study in south-eastern Brazil. *J. Trop.*
484 *Ecol.* 21(1): 121-125.

486 Swann, D.E., Kawanishi, K., Palmer, J., 2011. Evaluating Types and Features of Camera
487 Traps in Ecological Studies: A Guide for Researchers. In: O'Connell, A.F., Nichols, J.D.,
488 Karanth, K.U. (Eds.) Camera Traps in Animal Ecology. Springer, Tokyo. 27–43.

489 Tobler, M.W., Carrillo-Percastegui, S.E., Leite Pitman, R., Mares, R., Powell, G., 2008. An
490 evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest
491 mammals. *Anim. Conserv.*, 11(3): 169–178.

492 Trolle, M., Noss, A.J., Cordeiro, J.L.P., Oliveira, L.F.B., 2008. Brazilian tapir density in the
493 Pantanal: a comparison of systematic camera-trapping and line-transect surveys. *Biotropica*,
494 40(2): 211–217.

495 Upham, N.S., Esselstyn, J.A., Jetz, W., 2019. Inferring the mammal tree: species-level sets of
496 phylogenies for questions in ecology, evolution, and conservation. *PLOS Biol.* 17(12):
497 e3000494.

498 Welbourne, D.J., MacGregor, C., Paull, D., Lindenmayer, D.B., 2015. The effectiveness and
499 cost of camera traps for surveying small reptiles and critical weight range mammals: a
500 comparison with labour-intensive complementary methods. *Wildl. Res.*, 42: 414–425.

501 Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M., Jetz, W., 2014.
502 EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. *Ecology*,
503 95(7): 2027.

505 Wix, N., Reich, M., 2019. Time-triggered camera traps versus line transects – advantages and
506 limitations of multi-method studies for bird surveys. *Bird Study*, 66(2): 207-223.

508 Xavier, B.S., Rainho, A., Santos, A.M.C., Vieira, M.V., Carvalho, W.D., 2023. Global
systematic map of research on bats in agricultural systems. *Front. Ecol. Evol.* 11: 1214176.

510
511 **Table 1** - Values in USD representing the fixed and variable costs associated with camera
trapping and line transects.

	Description	Camera traps		Line transects	
		Amount	Total Cost	Amount	Total Cost
514	Fixed costs	External hard drive	1	67.50	-
515		Camera traps, including import taxes	3	151.08	-
516		Storage cards	3	18.39	1 6.13
517		AA batteries	24	23.08	-
518		Photo camera to record animal sightings	-	-	1 770.52
519		Trail establishment	-	-	3 4522.61
520		Trail cleaning (only for monitoring)	-	-	3 2261.31
521		Total		1129.83	21128.41
522	Variable costs	Traveling to the field site	2	29.60	2 29.60
523		Food for two people	2	46.90	4 93.80
524		Lodging for two people	2	73.70	4 147.40
525		Per diem for field assistant	2	50.25	4 100.50
526		Per diem for researcher	2	402.01	4 804.02
527		Hours to screen photos	1.5	90.45	-
528		Car rental (days)	2	76.79	4 153.58
529		Fuel (liters)	34.54	41.66	44.54 53.72
530		Total per sampling unit		2933.11	7649.09

536 **Table 2** - List of species recorded by line transects and camera traps in this study, organized by
 537 order and family.

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 Classification	538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 Common name	538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 Line transect	538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 Camera trap
Pilosa			
Myrmecophagidae			
<i>Myrmecophaga tridactyla</i>	Giant Anteater		x
<i>Tamandua tetradactyla</i>	Southern Tamandua	x	x
Cingulata			
Dasypodidae			
<i>Cabassous unicinctus</i>	Amazon Naked-tailed Armadillo		x
<i>Dasypus novemcinctus</i>	Nine-banded Armadillo		x
<i>Euphractus sexcinctus</i>	Yellow Armadillo		x
<i>Priodontes maximus</i>	Giant Armadillo		x
Primates			
Cebidae			
<i>Sapajus apella</i>	Black-capped Capuchin	x	x
<i>Saimiri ustus</i>	Golden-backed Squirrel Monkey	x	x
Pitheciidae			
<i>Chiropotes albinasus</i>	White-nosed Saki	x	
<i>Pithecia irrorata</i>	Gray's Bald-faced Saki	x	
<i>Plecturocebus parecis</i>	Parecis Titi	x	
Atelidae			
<i>Ateles chamek</i>	Black Spider Monkey	x	
<i>Lagothrix lagothricha</i>	Common Woolly Monkey	x	
Callitrichidae			
<i>Mico melanurus</i>	Black-tailed Marmoset		x
Carnivora			
Felidae			
<i>Leopardus pardalis</i>	Ocelot		x
<i>Panthera onca</i>	Jaguar		x
<i>Herpailurus yagouaroundi</i>	Jaguarundi		x
Canidae			
<i>Atelocynus microtis</i>	Short-eared Dog		x
<i>Cerdocyon thous</i>	Crab-eating Fox		x
<i>Speothos venaticus</i>	Bush Dog		x
Mustelidae			
<i>Eira barbara</i>	Tayra	x	x
Procyonidae			
<i>Nasua nasua</i>	South American Coati		x
<i>Procyon cancrivorus</i>	Crab-eating Raccoon		x
Perissodactyla			
Tapiridae			
<i>Tapirus terrestris</i>	Lowland Tapir	x	x
Artiodactyla			
Tayassuidae			

583	<i>Pecari tajacu</i>	Collared Peccary	x	x
584	<i>Tayassu pecari</i>	White-lipped Peccary	x	x
585	Cervidae			
586	<i>Mazama nemorivaga</i>	Amazonian Brown Brocket	x	x
587	Rodentia			
588	Sciuridae			
589	<i>Sciurus aestuans</i>	Brazilian Squirrel		x
590	Caviidae			
591	<i>Hydrochoerus hydrochaeris</i>	Capybara	x	x
592	Cuniculidae			
593	<i>Cuniculus paca</i>	Paca		x
594	Dasyproctidae			
595	<i>Dasyprocta azarae</i>	Agouti	x	x
596	Erethizontidae			
597	<i>Coendou prehensilis</i>	Brazilian Porcupine	x	

FIGURE LEGENDS

600 **Figure 1** - The study area's location, showing the transects (purple lines) and camera trap sites
601 (yellow points) used to sample medium- and large-sized mammals in the Rondon II
602 Hydroelectric Power Plant, Rondônia state, southern Brazilian Amazon. Sources: Google
603 Satellite and IBGE.

604 **Figure 2** - Relationship between resulting diversity (inventory) or 1 - bias (monitoring) and
605 sampling cost (in US\$) for three biodiversity dimensions (taxonomic, functional, and
606 phylogenetic). Each point represents a combination of sampling units of camera traps and
607 transects. Points representing the most cost-effective arrangements (i.e., optimal sampling
608 designs) are highlighted in orange. Note that for taxonomic diversity inventory, defining an
609 optimal sampling design is impossible, as diversity increases gradually with sampling cost.

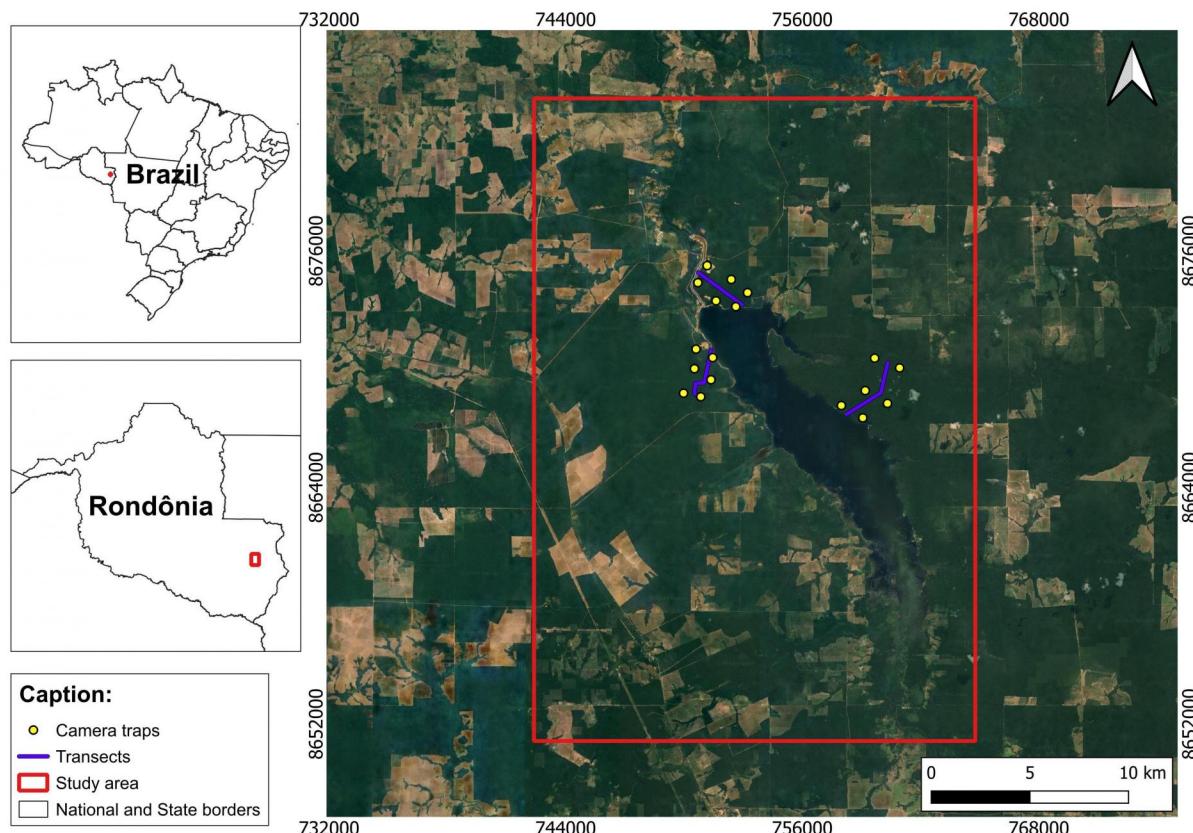


Figure 1 - The study area's location, showing the transects (purple lines) and camera trap sites (yellow points) used to sample medium- and large-sized mammals in the Rondon II Hydroelectric Power Plant, Rondônia state, southern Brazilian Amazon. Sources: Google Satellite and IBGE.

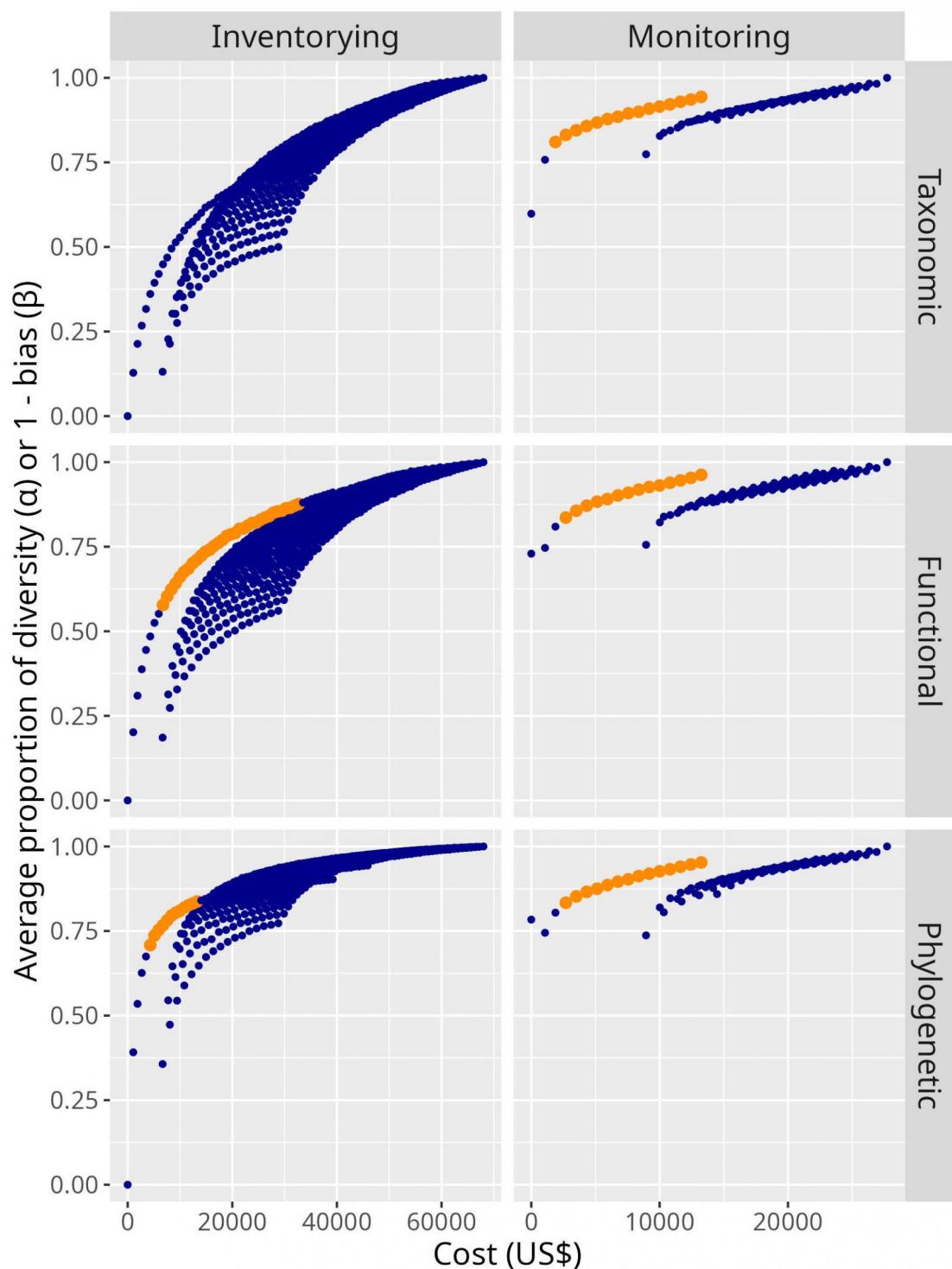

Figure 2[Download JPG \(733.49 kB\)](#)

Figure 2 - Relationship between resulting diversity (inventory) or 1 - bias (monitoring) and sampling cost (in US\$) for three biodiversity dimensions (taxonomic, functional, and phylogenetic). Each point represents a combination of sampling units of camera traps and transects. Points representing the most cost-effective arrangements (i.e., optimal sampling designs) are highlighted in orange. Note that for taxonomic diversity inventory, defining an optimal sampling design is impossible, as diversity increases gradually with sampling cost.

Manuscript body[Download source file \(579.27 kB\)](#)**Figures****Figure 1 -** [Download source file \(874.4 kB\)](#)

Figure 1 - The study area's location, showing the transects (purple lines) and camera trap sites (yellow points) used to sample medium- and large-sized mammals in the Rondon II Hydroelectric Power Plant, Rondônia state, southern Brazilian Amazon. Sources: Google Satellite and IBGE.

Figure 2 - [Download source file \(733.49 kB\)](#)

Figure 2 - Relationship between resulting diversity (inventory) or 1 - bias (monitoring) and sampling cost (in US\$) for three biodiversity dimensions (taxonomic, functional, and phylogenetic). Each point represents a combination of sampling units of camera traps and transects. Points representing the most cost-effective arrangements (i.e., optimal sampling designs) are highlighted in orange. Note that for taxonomic diversity inventory, defining an optimal sampling design is impossible, as diversity increases gradually with sampling cost.