

Patterns of morphological and molecular divergence of *Apodemus* (Rodentia: Muridae) species from the Western Palaearctic

Tina Klenovšek¹, Vida Jović², Boris Kryštufek³, Franc Janžekovič⁴, Marko Djurakic⁵

¹Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

²Department of Genetic Research, Institute for Biological Research "Siniša Stanković" – National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia

³Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia

⁴Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia

⁵Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

Abstract:

Variation in the cranium, mandible, and upper molars across eight *Apodemus* species from the Western Palaearctic, *A. agrarius* (subgenus *Apodemus*), *A. alpicola*, *A. flavicollis*, *A. sylvaticus*, *A. uralensis*, *A. witherbyi* (subgenus *Sylvaemus*), and *A. epimelas* and *A. mystacinus* (subgenus *Karstomys*) is compared to molecular divergence. For the first time in this genus, molecular phylogeny is inferred from mitochondrial and nuclear loci using a multispecies coalescent approach. Also for the first time, all three structures are analysed using geometric morphometric methods within a single study and tested for the presence of phylogenetic signal. Our findings indicate that for each morphological structure analysed, *A. mystacinus* and *A. epimelas* have the highest mean centroid size values, whereas *A. uralensis* has the lowest size variation among *Apodemus* species. This aligns with thermoregulatory expectations, although this remains a plausible rather than confirmed explanation due to the absence of direct test against temperature. The most distinctive mandible shapes are observed in *A. alpicola* and the subgenera *Apodemus* and *Karstomys*. *Karstomys* and *A. alpicola* also exhibit the most unique cranial morphology, while *A. agrarius* is characterized by its distinct molar shape. Phylogenetic signal is observed in the size and shape variation of each morphological structure analysed, with the exception of cranial shape, supporting a mosaic model of morphological evolution in *Apodemus*. The subdivision into the three *Apodemus* subgenera is consistent only by molar shape, suggesting that molar morphology can serve as a reliable proxy for phylogenetic divergence and thus can be used to clarify phylogenetic relationships within the genus, particularly for fossil material where genetic data are unavailable.

Keywords: geometric morphometrics, mandible, molars, phylogenetic signal, cranium, multilocus phylogeny.

Received: 2025-07-11

Revised: 2026-01-03

Accepted: 2026-02-03

Final review: 2025-11-28

Short title

Morphological and molecular divergence in *Apodemus*

Corresponding author

Tina Klenovšek

Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia; email: tina.klenovsek@um.si

4 **ABSTRACT**

5 Variation in the cranium, mandible, and upper molars across eight *Apodemus* species from the
6 Western Palaearctic, *A. agrarius* (subgenus *Apodemus*), *A. alpicola*, *A. flavicollis*, *A. sylvaticus*,
7 *A. uralensis*, *A. witherbyi* (subgenus *Sylvaemus*), and *A. epimelas* and *A. mystacinus* (subgenus
8 *Karstomys*) is compared to molecular divergence. For the first time in this genus, molecular
9 phylogeny is inferred from mitochondrial and nuclear loci using a multispecies coalescent
10 approach. Also for the first time, all three structures are analysed using geometric morphometric
11 methods within a single study and tested for the presence of phylogenetic signal. Our findings
12 indicate that for each morphological structure analysed, *A. mystacinus* and *A. epimelas* have the
13 highest mean centroid size values, whereas *A. uralensis* has the lowest. The most distinctive
14 mandible shapes are observed in *A. alpicola* and the subgenera *Apodemus* and *Karstomys*.
15 *Karstomys* and *A. alpicola* also exhibit the most unique cranial morphology, while *A. agrarius* is
16 characterised by its distinct molar shape. Phylogenetic signal is observed in the size and shape
17 variation of each morphological structure analysed, with the exception of cranial shape,
18 supporting a mosaic model of morphological evolution in *Apodemus*. The subdivision into the
19 three *Apodemus* subgenera is consistent only by molar shape, suggesting that molar morphology
can serve as a reliable proxy for phylogenetic divergence and thus can be used to clarify
phylogenetic relationships within the genus, particularly for fossil material where genetic data
are unavailable.

20 **Keywords:** cranium; multilocus phylogeny; geometric morphometrics; mandible; molars;
21 phylogenetic signal.

22 **INTRODUCTION**

23 *Apodemus* Kaup, 1829 is a genus of small rodents commonly known as field mice or
24 wood mice. They belong to the family Muridae and are distributed primarily across temperate
25 Europe, Asia, and parts of North Africa. The genus *Apodemus* comprises approx. 20 species,
26 each with its specific distribution range and characteristics (Denys et al., 2017; Musser and
27 Carleton, 2005). *Apodemus* is thought to be the oldest murine genus in Europe (Martín-Suárez
28 and Mein, 1998), but the reconstruction of its ancient distribution revealed Western and Central
29 Asia as the most likely centre of its origin (Ge et al., 2019). The genus has an extensive fossil
30 history dating back to the Miocene and its emergence is placed in either the Early Vallesian (ca.
31 10–11.6 Mya; Martín-Suárez and Mein, 1998) or the Turolian (5.2–7 Mya; Schenk et al., 2013).
32 The application of molecular clock dating estimated the most recent common ancestor of
33 *Apodemus* at 6.4 Myr (Steppan and Schenk, 2017) or 9.84 Myr (Ge et al., 2019). Despite the fact
34 that a sister genus of *Apodemus* is *Tokudaia* from the islands in the East China Sea (Steppan and
35 Schenk, 2017) and basal species in the genus (*A. argenteus* and *A. gurka*) are entirely Asiatic, the
36 Western Palaearctic region has been the stronghold for *Apodemus* since the Miocene, i.e.
37 throughout the evolutionary history of the genus (Ge et al., 2019). In the W. Palaearctic, which
38 includes Europe, North Africa and parts of the Middle East, ten *Apodemus* species are found
39 (Burgin et al., 2020; Denys et al., 2017), which belong to three monophyletic groups that are
40 usually ranked as distinct subgenera: *Apodemus* (*A. agrarius*), *Sylvaemus* (*A. alpicola*, *A.*
41 *flavicollis*, *A. sylvaticus*, *A. uralensis*, *A. witherbyi*, *A. hyrcanicus* and *A. ponticus*) and
42 *Karstomys* (*A. epimelas* and *A. mystacinus*). Eight of ten W. Palaearctic *Apodemus* species are
43 endemic to the region, with the exception of *A. agrarius* and *A. uralensis*. The former is of
44 Oriental origin and expanded into the W. Palaearctic after the Last Glacial Maximum
45 (Yalkovskaya et al., 2022). The latter is distributed from central Europe to western China (Denys

48 46 et al., 2017) and belongs to a clade close to *A. flavigollis* (Darvish et al., 2015) or *A. flavigollis* +
49 47 *A. alpicola* (Liu et al., 2012).

50 48 Over the past two decades, the use of genetic markers has substantially advanced our
51 49 understanding of species diversity within the genus *Apodemus* (Mezhzherin and Tereshchenko,
52 50 2023; Ge et al., 2019; Balasanyan et al., 2018; Darvish et al., 2015; Kryštufek et al., 2012;
53 51 Suzuki et al., 2008; Hoofer et al., 2007; Michaux et al., 2002). Analyses based on mitochondrial
54 52 markers (cytochrome *b* and *12S rRNA*) and a nuclear marker (*IRBP*) have revealed three deeply
55 53 divergent lineages corresponding to the subgenera *Apodemus*, *Sylvaemus*, and *Karstomys*
56 54 (Michaux et al., 2002). In the case of W. Palearctic species, subsequent studies, predominantly
57 55 based on cytochrome *b*, have provided two key insights. First, they revealed multiple distinct
58 56 clades within nominal species of *Sylvaemus*, indicating substantial unrecognized diversity and
59 57 complex evolutionary histories in *A. sylvaticus* (Herman et al., 2017; Michaux et al., 2003), *A.*
60 58 *flavigollis* (Yalkovskaya et al., 2018; Michaux et al., 2004), *A. mystacinus* (Olgun Karacan,
61 59 2023; Michaux et al., 2005), *A. uralensis* (Balasanyan et al., 2018; Chelomina and Atopkin,
62 60 2010), *A. witherbyi* (Balasanyan et al., 2018), and *A. agrarius* (Latinne et al., 2020). Second,
63 61 they prompted taxonomic revisions of some morphologically identified specimens (Kryštufek et
64 62 al., 2012, see our Supplementary material S1 and Supplementary Fig. S1). While cytochrome *b*
65 63 remains a widely used marker in *Apodemus* phylogenetics, it has notable limitations that
66 64 complicate comparisons across studies. These include variation in sampling strategies,
67 65 methodological differences in phylogenetic inference, and the presence of nuclear mitochondrial
68 66 pseudogenes (numts) in some specimens (Dubey et al., 2009). Additionally, cytochrome *b* is
69 67 prone to saturation at third codon positions, which can obscure deeper phylogenetic signals
70 68 (Suzuki et al., 2008; Michaux et al., 2002). These challenges highlight the importance of

72 69 cautious interpretation and the need for multilocus approaches incorporating nuclear markers to
73 70 clarify species boundaries and evolutionary relationships within *Sylvaemus*.

74 71 Interspecific morphological divergence in *Apodemus* has been studied in the context of
75 72 taxonomy (Helvaci and Çolak, 2021; Okulova et al., 2019; Darvish et al., 2014; Jojić et al., 2012;
76 73 Barčiová and Macholán, 2009; Kryštufek and Vohralík, 2009; Kuncová and Frynta, 2009; Çolak
77 74 et al., 2007; Frynta et al., 2006; Janžekovič and Kryštufek, 2004) or ecology (Kerr et al., 2017;
78 75 Renaud and Michaux, 2003). More rarely, molecular and morphological divergence have been
79 76 contrasted to assess the correspondence or lack of it (Ge et al., 2019; Çolak et al., 2007; Frynta et
80 77 al., 2006; Renaud and Michaux, 2003; Hille et al., 2002). Traditionally, most studies on the
81 78 morphological variability of *Apodemus* (Ge et al., 2019; Okulova et al., 2019; Knitlova and
82 79 Horaček, 2017; Darvish et al., 2014; Barčiová and Macholán, 2009; Kryštufek and Vohralík,
83 80 2009; Kuncová and Frynta, 2009; Çolak et al., 2007; Frynta et al., 2006; Hille et al., 2002;
84 81 Filippucci et al., 1996; Musser et al., 1996) have used craniodental and/or body linear
85 82 measurements as morphological characters. Such measurements, some of which are also
86 83 diagnostic in species taxonomy, provide valuable and comparable results, but fail to recover the
87 84 shape of the original form as they do not capture the geometrical relationships among the
88 85 measurements (Rohlf and Marcus, 1993). Alternatively, Fourier methods have been used in
89 86 outline analyses of *Apodemus* molars (Helvaci and Çolak, 2021; Ledevin et al., 2012) and
90 87 mandibles (Ledevin et al., 2012; Renaud et al., 2007; Renaud and Michaux, 2003). Despite well-
91 88 established landmark-based geometric morphometric methods (Rohlf and Slice, 1990) that can,
92 89 among others, capture and preserve the geometry of complex structures throughout analyses,
93 90 separate size and shape data, and provide powerful visualizations of even very subtle shape
94 91 changes for various research purposes (Klingenberg, 2013), only few studies employed it on

92 92 *Apodemus*, either for a single one or up to two skeletal elements within the same study (upper
93 93 molars: Janžekovič and Kryštufek, 2004; cranium: Dúhová, 2020; cranium and mandible: Jojić et
94 94 al., 2012). Different skeletal elements may evolve at different rates and follow different
95 95 developmental pathways, respond to different selection pressures due to functional constraints,
96 96 and be exposed to different environmental influences, i.e. their genetics, development and
97 97 function differ in ways that could influence their adaptive responses (Caumul and Polly, 2005),
98 98 not ignoring the role of genetic drift in their evolution (Felsenstein, 2002). All this combined
99 99 may lead to different degrees of similarity between the divergence of a particular morphological
100 100 character and the phylogenetic structuring of taxa (Kryštufek et al., 2016; Lu et al., 2014;
101 101 Ledevin et al., 2012; Caumul and Polly, 2005). In *Apodemus*, the shape of the three most
102 102 frequently studied structures – cranium, mandible and molars, gave mixed results, either showing
103 103 good (cranium: Dúhová, 2020; Frynta et al., 2006; mandible: Renaud et al., 2007; molars:
104 104 Helvaci and Çolak, 2021; Ledevin et al., 2012) or poor (mandible: Ledevin et al., 2012; Renaud
105 105 and Michaux, 2003) agreement between the phenetic relationships and the phylogeny. In general,
106 106 good agreement was more frequent, but it must be noted that poor agreement could be
107 107 underreported due to publication bias, selective reporting or favouring of positive results. Also,
108 108 the results cannot be directly compared because of differences in morphometric methods and
109 109 taxonomic sampling. Moreover, the phylogenetic reconstruction of the genus, which was used
110 110 for comparison with morphology, has changed over the past decades.

111 111 In this study, we investigated the phylogenetic relationships among W. Palaearctic
112 112 *Apodemus* species using published sequences from four mitochondrial loci (cytochrome *b*, *12S*
113 113 *rRNA*, D-loop, *COI*) and four nuclear loci (*IRBP*, *RAG1*, *I7*, *vWF*). For the first time in this
114 114 group, we applied a multispecies coalescent (MSC) framework based on multilocus data

120 115 (Douglas et al., 2022; Liu et al., 2009) to infer evolutionary history. Complementing the
121 116 molecular analysis, we conducted two-dimensional geometric morphometric analyses on three
122 117 key cranial structures, mandible, cranium, and upper molars, widely used in studies of small
123 118 mammal morphology. This integrative approach enabled us to evaluate the relative contributions
124 119 of phylogenetic signal and adaptive processes to morphological variation within the genus. We
125 120 defined two main objectives: (1) to assess whether any of the examined morphological structures
126 121 can reliably reflect phylogenetic relationships and thus aid in resolving taxonomic uncertainties
127 122 within *Apodemus*, and (2) to explore how adaptive processes influence cranial morphology,
128 123 particularly identifying which regions of the skull are most affected. To this end, we analysed ten
129 124 populations representing eight *Apodemus* species from the W. Palaearctic. Phenetic relationships
130 125 were inferred from patterns of size and shape variation in the cranium, mandible, and molars, and
131 126 interpreted in light of molecular phylogeny. Notably, this is the first study to apply geometric
132 127 morphometric methods to all three major cranial structures within a single comparative
133 128 framework across a broad sampling of *Apodemus* species from the W. Palaearctic.

134 129

MATERIAL AND METHODS**Sample for morphometric analyses**

The analysed sample included 264 mandibles, 275 crania, and 286 upper molars from eight *Apodemus* species from the Western Palearctic: *A. agrarius*, *A. alpicola*, *A. flavicollis*, *A. sylvaticus*, *A. uralensis*, *A. witherbyi*, *A. epimelas*, and *A. mystacinus* (Table 1). As some mandibles and/or crania were damaged, there were 230 specimens (80.4% of the total) in which all three structures (mandible, cranium and molars) were used. Two species were represented by geographically distinct populations, *A. flavicollis* from Slovenia and Anatolian Turkey, and *A. uralensis* from the Czech Republic and Anatolian Turkey. Altogether ten OUTs were considered in morphometric analyses. In analyses of the phylogenetic signal in morphometric data, we treated the two populations of *A. flavicollis* as separate taxa, and the sample of *A. uralensis* as a single taxon (see justification in Supplementary Figs. S1, S2 and Results related to the Phylogenetic reconstruction and divergence dating). Only adult specimens with fully erupted permanent dentition were studied, originating from the collections of the Slovenian Museum of Natural History (Ljubljana, Slovenia), the Natural History Museum Vienna (Vienna, Austria) and the Institute of Vertebrate Biology (Brno, Czech Republic).

Vouchers of the closely resembling species, *A. flavicollis* and *A. sylvaticus*, were captured in regions where only a single *Apodemus* species occurs, with their identities verified in other studies. Additional morphometric comparison of *A. flavicollis* and *A. sylvaticus* cranial data is presented in the Morphometric data acquisition and morphometric analysis.

Sample for molecular phylogenetic reconstruction

159 152 To reconstruct the phylogenetic relationships among *Apodemus* species in line with the
160 153 morphological sampling scheme, we first assessed whether geographically distant populations of
161 154 both *A. flavicollis* (including specimens genetically related to *A. ponticus*) and *A. uralensis*
162 155 should be considered separate evolutionary lineages in the MSC. This evaluation was based on
163 156 cytochrome *b* sequences, the most widely represented mitochondrial marker for these taxa in
164 157 GenBank, with broad geographic coverage. The cytochrome *b* dataset comprised 317 sequences
165 158 for *A. flavicollis* and *A. ponticus*, and 131 sequences for *A. uralensis* (Supplementary material
166 159 S1). Sixteen cytochrome *b* sequences (15 *A. witherbyi* (reported as *A. fulvipectus*) and 1 *A.*
167 160 *sylvaticus*) were used as outgroups in analyses of the *A. flavicollis*–*ponticus* group, while a single
168 161 *A. sylvaticus* sequence was used as an outgroup for *A. uralensis* (Supplementary material S1).

169 162 For the MSC, we included 48 individuals representing nine *Apodemus* species (*A.*
170 163 *flavicollis*: 6, *A. ponticus*: 3, *A. sylvaticus*: 5, *A. uralensis*: 6, *A. alpicola*: 5, *A. witherbyi*: 5, *A.*
171 164 *epimelas*: 5, *A. mystacinus*: 8, *A. agrarius*: 5), and six outgroup individuals (*Tokudaia osimensis*:
172 165 2, *Malacomys longipes*: 4). From these 54 specimens, we included 160 sequences for eight loci,
173 166 obtained from GenBank and originating from previously published studies (Supplementary
174 167 material S2): four mitochondrial loci (cytochrome *b*, 12S rRNA, D-loop, *COI*) and four nuclear
175 168 loci (*IRBP*, *RAG1*, *I7*, *vWF*). No individual was represented at all eight loci. Gene coverage per
176 169 specimen ranged from 12.5% (1 of 8 loci) to 62.5% (5 of 8 loci), with an average coverage of
177 170 37% (3 of 8 loci) across the 54 individuals (Supplementary material S2). To retain the full extent
178 171 of available data, we chose not to concatenate sequences from different individuals, but instead
179 172 retained the sparse data matrix in the MSC framework. Concatenated sequence approach
180 173 appeared to bias the estimate of branch lengths, substitution rates and yield to inconsistent tree

182 174 typologies (Douglas et al., 2022). Likewise, the MSC analysis is robust and can successfully
183 175 handle missing data (Jordan Douglas, personal communication).

184 176

185 177 **Phylogenetic analysis and divergence dating**

186 178 Multiple sequence alignment for each gene was performed in AliView (version 1.30)
187 179 (Larsson, 2014) which uses Muscle (version 3.8.425) (Edgar, 2004). To test if geographically
188 180 distant populations of both *A. flavicollis* (333 sequences, trimmed alignment of 969bp,
189 181 Supplementary material S1) and *A. uralensis* (132 sequences, trimmed alignment of 1014bp,
190 182 Supplementary material S1) should be considered separate evolutionary lineages as well to
191 183 provide justification for sequences grouping scheme required for MSC, we perform maximum
192 184 likelihood phylogenetic reconstruction in IQ-TREE (version 3.0.1) (Wong et al., 2025) using
193 185 default settings and ultrafast bootstrap approximation (Hoang et al., 2018) via online web
194 186 platform (<http://iqtree.cibiv.univie.ac.at/>).

195 187 In MSC analysis eight loci alignments (cytochrome *b*: 970bp, *12S rRNA*: 981bp, D-loop:
196 188 1163bp, *COI*: 719bp, *IRBP*: 1205bp, *RAG1*: 1002bp, *I7*: 792bp, *vWF*: 1191bp) from 54
197 189 individuals were grouped into 11 species (nine *Apodemus* spp. + two outgroup species,
198 190 Supplementary material S2) and dated phylogenetic relationship was estimated in StarBeast3
199 191 package (version 1.1.9) (Douglas et al., 2022) for BEAST 2 (version 2.7.7) (Bouckaert et al.,
200 192 2019). The input parameters for BEAST 2 were set as follows. Site model, clock model and trees
201 193 were treated independent (unlinked) for all loci during estimation of relative rates of substitution
202 194 among branches, tree topology and branching times. Gene ploidy for mitochondrial and nuclear
203 195 loci was set to 0.5 and 2, respectively. For each locus a site model and associated substitution
204 196 model were estimated with bModelTest (version 1.3.3) (Bouckaert and Drummond, 2017) using

206 197 transition and transversion prior model through MCMC. Gene clock model was estimated for all
207 198 loci except cytochrome *b* which was fixed at 1. Species tree was estimated under relaxed clock
208 199 model where both mean clock rate and standard deviation were estimated with log normal prior
209 200 where M and S were initially set to 0.001 and 0.1, respectively, in real space. Because we used
210 201 node calibration during analysis, calibrated Yule model was used with speciation rate prior under
211 202 the log normal distribution with M and S parameters set to 0.16 and 0.4, respectively, in real
212 203 space. The node of the most recent common ancestor of Apodemini tribus (*Tokudaia* and
213 204 *Apodemus* genera) was calibrated using log normal distribution prior (M=0.6, S=0.7 in real
214 205 space, offset=10.1) which place their split about 10.7 Mya (Kimura et al., 2017). Likewise, the
215 206 split between *Apodemus* and (*Karstomys* + *Sylvaemus*) was approximated with normal
216 207 distribution (mean=7, sigma=1.1) (Michaux et al., 2005, 2002). The posterior distribution of
217 208 parameters were estimated with MCMC sampling where samples down every 100 000 steps over
218 209 20 000 000 iterations. We ran two chains and discarded 10% of the sample via burn-in. A
219 210 convergence of estimated parameters was tested in Tracer (version 1.7) (Rambaut et al., 2018).
220 211 All parameters reached considerably over recommended 200 ESS values except
221 212 TreeDistanceUPGMA.t:cyt_b, BMT_gamaShape.s:coi_site, hasGammaRates.s:coi_site,
222 213 ActiveProportionInvariable.s:coi_site and cySpeciationRate.t:Species which did not affect the
223 214 topology of the maximum clade credibility tree (results not shown). We also run BEAST 2
224 215 MCMC by sampling just from a prior in order to check the distribution of parameters of the
225 216 model without the data. Afterwards, TreeAnnotator (version 2.7.4) was utilized to summarize the
226 217 information from a sample of trees produced by BEAST 2 and the maximum clade credibility
227 218 tree where node heights were expressed as median heights was calculated and visualized via
228 219 IcyTree (Vaughan, 2017) online platform. The maximum clade credibility tree was used as input
229

230 220 tree file in subsequent comparative geometric morphometric analysis in MorphoJ v. 1.07a
231 221 (Klingenberg, 2011).

232 222

Morphometric data acquisition and morphometric analysis

234 224 Two-dimensional landmarks were recorded on images (Fig. 1) of the mandible in labial
235 225 view (12 landmarks), the cranium in ventral view (16 landmarks), and the maxillary molars in
236 226 occlusal view (14 landmarks) using tpsDig software (Rohlf, 2015a, b).

237 227 Size and shape variation of the mandible, crania, and the upper molars were studied
238 228 separately using geometric morphometric methods based on Procrustes superimposed landmarks
239 229 (Dryden and Mardia, 1998; Rohlf and Marcus, 1993; Bookstein, 1991). To extract information
240 230 on variation in size (centroid size, CS) and shape (Procrustes coordinates) from the landmark
241 231 data, the raw landmark coordinates of all specimens belonging to ten operational taxonomic units
242 232 (OTUs) of *Apodemus* (Table 1) were superimposed using Generalized Procrustes Analysis
243 233 (GPA) (Rohlf, 1999; Dryden and Mardia, 1998; Rohlf and Slice, 1990).

244 234 To confirm the identification of specimens of phenotypically similar OTUs (*A. flavicollis*
245 235 SI and *A. sylvaticus*; although the latter is smaller), we used cranial data and performed two
246 236 Principal Component Analyses (PCAs): the first using the covariance matrix of Procrustes
247 237 coordinates, and the second based on the covariance matrix of residuals from a multivariate
248 238 regression of Procrustes coordinates onto log-transformed centroid size (log CS). We also
249 239 conducted two multivariate analyses of variance (MANOVAs): the first using Procrustes
250 240 coordinates, and the second using residuals from the multivariate regression of Procrustes
251 241 coordinates onto log CS as the dependent variables, with OTU as the independent variable.
252 242 Results (not shown) indicated clear separation of the two OTUs in PCA ordination space and

254 243 statistically significant difference (MANOVA), with cranial differences between *A. flavigollis*
255 244 and *A. sylvaticus* consistent with those previously observed by both traditional morphometrics
256 245 (Kryštufek and Stojanovski, 1996; Tvrtković, 1979; Niethammer, 1969) and geometric
257 246 morphometrics (Jović et al., 2014).

258 247 To estimate sexual size and shape dimorphism in the mandibles, crania, and upper molars
259 248 within each OTU, except those with high numbers of individuals of unknown sex (*A. agrarius*,
260 249 *A. flavigollis* SI, *A. sylvaticus*, and *A. epimelas*; Table 1), we regressed CS and Procrustes
261 250 coordinates onto the sex dummy variables. We observed statistically insignificant sexual size and
262 251 shape dimorphism in all three morphological structures (results not shown) within each OTU (*A.*
263 252 *alpicola*, *A. flavigollis* TR, *A. uralensis* CZ, *A. uralensis* TR, *A. witherbyi* and *A. mystacinus*).

264 253 Likewise, previous study reported no sexual size dimorphism in the mandibles, crania, and the
265 254 upper molars of *A. agrarius*, *A. alpicola*, *A. flavigollis*, *A. sylvaticus*, *A. uralensis*, and *A.*
266 255 *epimelas* (Janžeković and Kryštufek, 2004). Jović et al. (2012) also provided evidence of no
267 256 sexual size dimorphism in the mandibles and crania of *A. agrarius*, *A. flavigollis*, *A. sylvaticus*
268 257 and *A. epimelas*, as well as no sexual shape dimorphism in the crania, while sexual differences in
269 258 mandibular shape within these four species were smaller than shape differences between species.
270 259 Therefore, in the subsequent analyses we included specimens of unknown sex and pooled the
271 260 sexes.

272 261 To examine size variation, we conducted an analysis of variance (ANOVA) with CS as
273 262 the dependent variable and OTU as the independent variable. We also performed the pairwise
274 263 post-hoc tests for all OTUs as a series of regressions of CS on dummy variables for pairs of
275 264 OTUs. The statistical significance of size differences between the analysed OTUs was evaluated

277 265 using a permutation test with 10,000 permutation runs (Edgington, 1995; Good, 1994). Finally,
278 266 we plotted the means, standard deviations, and standard errors of CS for the OTUs analysed.

279 267 To examine shape variation, we first performed MANOVA with Procrustes coordinates
280 268 as the dependent variables and OTU as the independent variable. Then, we conducted the
281 269 pairwise permutation tests (with 10,000 permutation runs) for all OTUs as a series of regressions
282 270 of Procrustes coordinates on dummy variables for pairs of OTUs. Classification accuracy of
283 271 OTUs was assessed by applying a leave-one-out cross-validated Discriminant Function Analysis
284 272 (DFA) (Lachenbruch, 1967). To visually examine patterns of shape variation, we applied
285 273 Canonical Variate Analysis (CVA). Warped outline drawings (Klingenberg, 2013) were used to
286 274 visually identify the extent and direction of shape variation between OTUs separated along the
287 275 CV axes.

288 276 (M)ANOVA and leave-one-out cross-validated DFA were performed in SPSS v. 25.0
289 277 (IBM Corp, 2017). All other analyses were done in MorphoJ v. 1.07a (Klingenberg, 2011).

290 278

Analysis of the phylogenetic signal in morphometric data

291 279 To test for the presence of a phylogenetic signal in the morphometric data, we mapped
292 280 the geometric morphometric data to a phylogeny using weighted squared-change parsimony
293 281 (Klingenberg and Gidaszewski, 2010). To test whether the pattern of morphological (mandibular,
294 282 cranial, and upper molar) size and shape variation reflects the phylogenetic pattern, a
295 283 permutation test (with 10,000 iterations) was performed against the null hypothesis of the
296 284 absence of phylogenetic structure in the morphometric data. We also superimposed the
297 285 phylogeny onto the morphospace defined by the first two principal components (PCs) of the
298 286 covariance matrix among the average shapes of the analysed OTUs (Klingenberg and Gidaszewski,
299 287

300

13

301 288 2010). MorphoJ v. 1.07a (Klingenberg, 2011) was used for these analyses. Finally, we assessed
302 289 congruence between the MSC phylogeny and UPGMA phenograms derived from Procrustes
303 290 distance matrices among mean OTU shapes using a co-phylogenetic tree comparison
304 291 implemented in cophylo (phytools v.2.4-4; Revell, 2024). The MSC tree was converted to class
305 292 "phylo" and pruned of outgroups. For each morphological structure, UPGMA phenograms were
306 293 generated with hclust in base R and converted to "phylo" objects. Trees were compared using
307 294 cophylo with rotate = TRUE to optimize vertical correspondence of nodes. Shape variation for
308 295 each OTU was mapped onto terminal branches of the UPGMA phenograms as deviations from
309 296 the grand mean shape.

310 297

311 298

RESULTS

312 299 **Phylogenetic reconstruction and divergence dating**

313 300 The phylogenetic inference of 317 cytochrome *b* sequences of *A. flavigollis* sensu lato via
314 301 maximum likelihood analysis showed two clear, deep, well supported geographically segregated
315 302 genetic lineages (Supplementary Fig. S1). For instance, all European samples (including the
316 303 European part of Turkey - Thrace), part of Russian samples (Urals, Samara, Volgograd,
317 304 Voronezh) and Kazakhstan form a lineage that we annotated as *A. flavigollis* SI (abbreviation for
318 305 Slovenia). Samples from Georgia, Iran, Israel, the Anatolian part of Turkey and single Russian
319 306 sample (Krasnodar) form a lineage annotated as *A. flavigollis* TR (abbreviation for Turkey
320 307 (Türkiye)). The only exception is single sample from north-east part of Turkey (Damar,
321 308 AJ605666) which group within *A. flavigollis* TR clade. Altogether, we treat *A. flavigollis*
322 309 lineages as two separate species in the following MSC analysis. In contrast to *A. flavigollis* sensu

323

14

324 310 lato, the phylogenetic inference of 131 cytochrome *b* sequences of *A. uralensis* didn't show clear
325 311 geographical segregation (Supplementary Fig. S2). Although samples from Czech Republic and
326 312 Anatolia genetically differed to some extent, we didn't observe well supported split via ultrafast
327 313 bootstrap methods in our maximum likelihood analysis. Therefore, due to unclear geographic
328 314 clustering of the sequences, we treat *A. uralensis* as single species in MSC.

329 315 The phylogenetic relationships among the 11 taxa were estimated using a time-calibrated
330 316 MSC model and these relationships are summarized in Fig. 2 as a maximum clade credibility
331 317 tree, showing posterior median divergence times and posterior probabilities (pp) for each node.
332 318 The split between the Apodemini tribe (*Tokudaia* and *Apodemus* genera) and *Malacomys*
333 319 *longipes* (tribe Malacomyini) is estimated at approximately 11.2 Mya (95% HPD: 10.3–12.9),
334 320 while within Apodemini, the divergence between *Tokudaia* and *Apodemus* occurred around 10.6
335 321 Mya (95% HPD: 10.2–11.6). Both nodes are strongly supported (pp=1.0).

336 322 Within the *Apodemus* genus, the split between *A. agrarius* (subgenus *Apodemus*) and the
337 323 clade comprising subgenera *Karstomys* and *Sylvaemus* occurred approximately 9.76 Mya (95%
338 324 HPD: 7.7–10.9), though this node is only moderately supported (pp=0.63). The divergence
339 325 between *Karstomys* and *Sylvaemus* is estimated at 7.37 Mya (95% HPD: 5.86–8.73), with strong
340 326 support (pp=1.0). Within *Karstomys*, *A. epimelas* and *A. mystacinus* diverged around 1.57 Mya
341 327 (95% HPD: 0.43–3.66), also with high support (pp=1.0).

342 328 Within *Sylvaemus*, the earliest divergence separates *A. witherbyi* from all other members,
343 329 dated to approximately 3.88 Mya (95% HPD: 2.91–5.16; pp=1.0). This is followed by the
344 330 divergence of *A. uralensis* from the remaining *Sylvaemus* taxa around 2.70 Mya (95% HPD:
345 331 1.98–3.81; pp=0.99). Subsequently, *A. alpicola* diverged from the clade containing *A. flavigollis*

347 332 sensu lato at about 1.93 Mya (95% HPD: 1.21–2.79; pp=0.98), with the final split between the *A.*
348 333 *flavicollis* SI and TR lineages estimated at 1.36 Mya (95% HPD: 0.42–2.24; pp=0.8).

349 334 Size variation

350 335 Analyses of variance (ANOVAs) for centroid size disclose significant size differences
351 336 among *Apodemus* OTUs (mandible: $F_{9,254}=149.08$, $P=0.0000$, $Rsq=0.8408$; cranium:
352 337 $F_{9,265}=240.77$, $P=0.0000$, $Rsq=0.8910$; molars: $F_{9,276}=388.06$, $P=0.0000$, $Rsq=0.9268$). The
353 338 results of the pairwise *Apodemus* OTUs comparisons are shown in Supplementary Table S1. The
354 339 majority of pairwise comparisons reveal statistically significant ($P<0.001$ after Bonferroni
355 340 correction) size differences between *Apodemus* OTUs. The average Rsq is the highest (63.3%)
356 341 for molars, followed by that for cranium (55.5%), and the lowest for mandible (53.4%). The
357 342 plots of the means of the centroid sizes, standard deviations, and standard errors for the
358 343 *Apodemus* OTUs are given in Supplementary Fig. S3. *Apodemus mystacinus* and *A. epimelas*
359 344 have the highest centroid size mean values, whereas *A. uralensis* from the Czech Republic and
360 345 Turkey have the smallest. Although *A. epimelas* differs the most from the other OTUs
361 346 (Supplementary Table S1), *A. mystacinus* has the largest mandibles, crania and molars, while *A.*
362 347 *uralensis* from the Czech Republic the smallest (Supplementary Fig. S3). All OTU pairs
363 348 containing *A. uralensis* from the Czech Republic and Turkey differ significantly in mandibular
364 349 size. In terms of variation in cranial size, all OTU pairs comprising *A. epimelas*, *A. mystacinus*
365 350 and *A. uralensis* from the Czech Republic differ significantly. In the variation of molar size, only
366 351 OTU pairs containing *A. flavicollis* from Slovenia are significantly different (Supplementary
367 352 Table S1).

368 353
369 354

370 Shape variation

371 355 Multivariate analyses of variance (MANOVAs) reveal significant shape differences
372 356 among *Apodemus* OTUs (mandible: λ Wilks=0.0009, $F_{180,1956.94}=14.65$, $P=0.0000$; cranium:
373 357 λ Wilks=0.0002, $F_{252,2066.18}=14.35$, $P=0.0000$; molars: λ Wilks=0.0028, $F_{216,2159.97}=10.04$,
374 358 $P=0.0000$). All *Apodemus* OTU pairs differ significantly ($P<0.001$ after Bonferroni correction) in
375 359 the shape variation of the analysed morphological structures, except for *A. witherbyi* and *A.
376 360 uralensis* from Turkey in the variation of the cranial shape (Supplementary Table S2). The
377 361 average Rsq value is the highest (26.8%) for the cranium, followed by that for the mandible
378 362 (26.6%) and the lowest for the molars (19.2%). According to the average Rsq values, *A.
379 363 mystacinus* differs the most for mandibular shape variation, *A. epimelas* for cranial and *A.
380 364 agrarius* for molar.

381 365 The classification accuracies of the OTUs assessed by the application of leave-one-out
382 366 cross-validated Discriminant Function Analysis (DFA) for mandible, cranium and upper molars
383 367 are shown in Tables 2–4. Cross-validated DFAs reveal that 81.4% of the mandibles, 80.7% of
384 368 the crania, and 70.3% of the molars are correctly reclassified.

385 369

386 370

388 371 **Mandibular shape variation**

389 372 Canonical Variate Analysis (CVA; Fig. 3) separates members of the subgenus *Karstomys*

390 373 (*A. epimelas* and *A. mystacinus*) from members of the other two subgenera along the CV1 axis,

391 374 and differences are the most pronounced between *A. mystacinus* and *A. alpicola*. The CV2 axis

392 375 separates *A. mystacinus* (subgenus *Karstomys*), *A. agrarius* (subgenus *Apodemus*) and *A.*

393 376 *alpicola* (subgenus *Sylvaemus*) from the others, and differences in mean mandibular shape along

394 377 the CV2 axis are the most pronounced between *A. alpicola* and *A. sylvaticus*. Changes in

395 378 mandibular shape along the CV1 axis are evident throughout the structure. In the posterior part

396 379 of the mandible (ascending ramus), members of the subgenus *Karstomys* are characterised by the

397 380 larger condylar and angular but smaller coronoid processes compared to the other two subgenera.

398 381 In the anterior part of the mandible (alveolar region), the mice of the subgenus *Karstomys* have a

399 382 slightly longer molar row in the region of the first molar and more robust zones of molar and

400 383 incisor alveoli with an anterior shortening of the mandible (shorter diastema) compared to the

401 384 other subgenera. Shape changes along the CV2 axis are visible throughout the mandible.

402 385 Compared to other species, *A. mystacinus*, *A. agrarius*, and *A. alpicola* generally have lower

403 386 mandibles with elongation of the region between the condylar and angular processes and the

404 387 incisor alveolus. In addition, their mandibles are characterised by a larger mandibular notch (i.e.

405 388 shortened and anteriorly directed coronoid process).

406 389

408 390

Cranial shape variation

409 391 Canonical Variate Analysis (CVA; Fig. 4) – CV1 axis separates *A. epimelas* and *A.*
410 392 *mystacinus* (subgenus *Karstomys*) and *A. alpicola* (subgenus *Sylvaemus*) from *A. agrarius*
411 393 (subgenus *Apodemus*) and other members of subgenus *Sylvaemus*. Differences in mean cranial
412 394 shape along the CV1 axis are most pronounced between *A. epimelas* and *A. agrarius*. The CV2
413 395 axis separates *A. alpicola* from other OTUs. Differences in mean cranial shape along the CV2
414 396 axis are the most pronounced between *A. alpicola* and *A. epimelas* and *A. sylvaticus*. The changes
415 397 in cranial shape along the CV1 axis encompass the entire structure. Compared to other species,
416 398 *A. epimelas*, *A. mystacinus* and *A. alpicola* have slimmer crania with more compressed
417 399 basicrania. They also have a longer *foramen incisivum*, a slightly smaller *bulla tympanica*, and
418 400 diverged zygomatic arches. Shape variation along the CV2 axis is visible throughout the
419 401 cranium. Compared to other species, *A. alpicola* has a narrower cranium with longer rostrum and
420 402 compressed basicranium, somewhat shorter *foramen incisivum*, and smaller *bulla tympanicum*.
421 403
422 404

423

19

405 **Upper molar shape variation**

406 Canonical Variate Analysis (CVA; Fig. 5) – CV1 axis separates members of the

407 subgenera *Sylvaemus* and *Karstomys* from *A. agrarius* (subgenus *Apodemus*). Differences in

408 mean molar shape along the CV1 axis are most pronounced between *A. alpicola* and *A. agrarius*.

409 Changes in molar shape along the CV1 axis are generally in the labial-lingual direction and

410 include all three molars. Compared to subgenera *Sylvaemus* and *Sylvaemus*, species of the

411 subgenus *Apodemus* (*A. agrarius*) is characterised by less robust molars with the first molar

412 being particularly long. The CV2 axis separates *A. agrarius* from *A. epimelas* and *A. mystacinus*,

413 and molar shape differences along the CV2 axis are most pronounced between *A. agrarius* and

414 *A. epimelas*. Shape changes along the CV2 axis are distributed across the entire molar row.

415 Compared to *A. epimelas*, *A. agrarius* has a narrower and longer molar row.

416
417
418 **Phylogenetic signal in size and shape variation**
419 A phylogenetic signal in size variation is observed for all morphological structures
420 studied, while the presence of a phylogenetic signal in shape variation is noted for the mandible
421 and upper molars. For the cranium, the permutation test shows the absence of a phylogenetic
422 structure in shape variation (Table 5). Phylo-PCA plots of mean shapes for the analysed
423 *Apodemus* OTUs (Supplementary Fig. S4) showed OTU distributions comparable to those in the
424 CVA plots (Figs. 3-5). Similarly, shape changes associated with the first two PCs are similar to
425 those of the CVA and are therefore not presented. Unlike the phylo-PCA plots for mandibular
426 and molar shape, the projection of the phylogenetic tree into the PC plot for cranial shape
427 revealed a long branch between the related *Apodemus* species (*A. epimelas* and *A. mystacinus*)

448 428 and a crossing of the *A. agrarius* branch, confirming the absence of phylogenetic structure in the
449 429 cranial shape variation (Supplementary Fig. S4). Co-phylogenetic plots comparing the
450 430 reconstructed MSC phylogeny with mandibular, cranial, and molar UPGMA phenograms,
451 431 annotated with OTU mean shapes relative to the grand mean, are shown in Figs. 6–8.
452 432 Correspondence between the MSC phylogeny and UPGMA phenograms was lowest for cranial
453 433 shape and highest for molar shape. The molar UPGMA largely recovered the subgeneric
454 434 clustering observed in the MSC phylogeny, except for species within *Sylvaemus*, which remained
455 435 incongruent with relationships inferred from molecular data. Phylogenetic signal was detected
456 436 only in mandible and molar shape data (Figs. 6 and 8).

DISCUSSION**Molecular divergence**

This study provides the first phylogeny of Western Palaearctic *Apodemus* species inferred under the multispecies, multilocus coalescent (MSC) model (Douglas et al., 2022; Liu et al., 2009) using exclusively published sequences. The MSC framework, which jointly estimates gene and species trees within a Bayesian framework, is particularly suitable for resolving recent evolutionary events and accounting for incomplete lineage sorting, processes suspected in *Apodemus* (e.g., Suzuki et al., 2008; Michaux et al., 2002).

Our reconstructed phylogeny supports the division of the genus *Apodemus* into three subgenera, with *Sylvaemus* forming a sister clade to *Karstomys*, and these two together sister to the subgenus *Apodemus*. This pattern has been documented in studies using cytochrome *b* (Balasanyan et al., 2018; Darvish et al., 2015; Hoofer et al., 2007) and multigene approaches (Fabre et al., 2012; Suzuki et al., 2008; Michaux et al., 2002), although some studies report alternative topologies (Mezhzherin and Tereshchenko, 2023; Ge et al., 2019; Kryštufek et al., 2012). In our analysis, the split between *Apodemus* and (*Karstomys* + *Sylvaemus*) received moderate support (posterior probability=0.63), which may be explained by incomplete sampling of Asian species that are part of the subgenus *Apodemus* (Steppan and Schenk, 2017; Suzuki et al., 2008, 2003; Zwickl and Hillis, 2002).

While the monophyly of *Karstomys* (represented by *A. mystacinus* and *A. epimelas*) is strongly supported, resolving relationships within *Sylvaemus* proved somewhat challenging. Most nodes within this subgenus received high support (posterior probability>0.9), including the basal position of *A. witherbyi*, the divergence between *A. uralensis* and the clade comprising *A. alpicola* and *A. flavicollis* sensu lato, and the subsequent split between *A. alpicola* and *A.*

482 460 *flavicollis* sensu lato. In contrast, the node separating *A. sylvaticus* from (*A. uralensis* + (*A.*
483 461 *alpicola* + *A. flavicollis* sensu lato)) received low support (posterior probability=0.52), indicating
484 462 uncertainty in its placement. The phylogenetic position of *A. sylvaticus* has consistently been
485 463 difficult to resolve, even in studies based on the widely used mitochondrial gene cytochrome *b*
486 464 (Mezhzherin and Tereshchenko, 2023; Olgun Karacan, 2023; Ge et al., 2019; Balasanyan et al.,
487 465 2018; Yalkovskaya et al., 2018; Herman et al., 2017; Lalis et al., 2016; Darvish et al., 2015;
488 466 Suzuki et al., 2015; Kryštufek et al., 2012; Chelomina and Atopkin, 2010; Dubey et al., 2009;
489 467 Suzuki et al., 2008; Balakirev et al., 2007; Hoofer et al., 2007; Michaux et al., 2005, 2004, 2003,
490 468 2002; Liu et al., 2004; Reutter et al., 2003; Martin et al., 2000). Depending on the method (e.g.,
491 469 model-based vs. distance-based) and the geographic scope of sampling (e.g., European vs. Asian
492 470 populations), *A. sylvaticus* has been placed either as sister to *A. flavicollis* sensu lato or in a more
493 471 basal position within *Sylvaemus*. Similar uncertainties are present in nuclear datasets (Suzuki et
494 472 al., 2008), although nuclear gene data remain limited in both taxonomic and geographic coverage
495 473 compared to mitochondrial data.

496 474 Multilocus phylogenies of Western Palaearctic *Apodemus* have been conducted on
497 475 limited sample sets, with most studies analyzing concatenated gene sequences in a supermatrix
498 476 approach (Ge et al., 2019; Steppan and Schenk, 2017; Fabre et al., 2012; Suzuki et al., 2008,
499 477 2003; Michaux et al., 2002). The phylogeny recovered in our study is in full agreement with
500 478 Fabre et al. (2012) and Michaux et al. (2002), both of which used combined nuclear and
501 479 mitochondrial loci. However, discrepancies were observed in comparison to other multilocus
502 480 concatenation-based studies, particularly regarding the placement of *A. sylvaticus* (Suzuki et al.,
503 481 2003), *A. uralensis* (Suzuki et al., 2008), and the relationship between *A. uralensis* and *A.*
504 482 *witherbyi* (Steppan and Schenk, 2017). These discrepancies among studies highlight how

506 483 different genes may reflect different evolutionary histories, complicating species delimitation
507 484 and phylogenetic inference. In this context, the MSC framework, designed to model gene tree
508 485 discordance relative to the species tree (Douglas et al., 2022; Liu et al., 2009), offers a more
509 486 robust approach for reconstructing the evolutionary history of *Apodemus*.

510 487 Our divergence time estimates were calibrated using the most recent common ancestor
511 488 (MRCA) of *Apodemus* and *Tokudaia* at ~10.5 Mya, based on the stratigraphic occurrence of
512 489 *Parapodemus badgleyae* (Kimura et al., 2017), and the *Karstomys/Sylvaemus* split at ~7 Mya
513 490 (Michaux et al., 2005, 2002). These estimates produced a robust temporal framework consistent
514 491 with known Miocene fossil records. We estimate the split between *Apodemus* and the *Karstomys*
515 492 + *Sylvaemus* clade at ~9.76 Mya and the *Karstomys/Sylvaemus* divergence at ~7.4 Mya, both
516 493 occurring during the Late Miocene. These findings closely align with the estimates of Darvish et
517 494 al. (2015), reinforcing the role of Late Miocene environmental changes such as aridification and
518 495 tectonic uplift in the Eastern Mediterranean in shaping early diversification within *Apodemus*.

519 496 In the Pliocene, our analysis indicates a series of deeper splits within *Sylvaemus*: *A.*
520 497 *witherbyi* diverged around 3.88 Mya, followed by the split between *A. sylvaticus* and *A. uralensis*
521 498 at 3.48 Mya, and *A. alpicola* diverging from the remaining lineages at 2.7 Mya. These events
522 499 may reflect expansion into newly available temperate habitats during warmer Pliocene intervals,
523 500 prior to the onset of severe glaciations.

524 501 Further diversification within both *Karstomys* and *Sylvaemus* occurred during the
525 502 Pleistocene. Within *Sylvaemus*, the divergence between *A. alpicola* and the *A. flavigollis* sensu
526 503 lato clade is estimated at approximately 1.93 Mya, followed by the split between the Anatolian
527 504 (TR) and European (SI) lineages of *A. flavigollis* at around 1.36 Mya. Additionally, the
528 505 divergence between *A. epimelas* and *A. mystacinus* occurred at about 1.57 Mya. These

530 506 Pleistocene divergence events likely correspond to glacial–interglacial cycles that generated
531 507 intermittent barriers to gene flow, promoting allopatric divergence. Compared to previous
532 508 molecular studies, our estimates for basal splits (e.g., *Karstomys/Sylvaemus*) are congruent, but
533 509 more recent divergences are consistently younger. For example, Michaux et al. (2005) placed the
534 510 *A. mystacinus/A. epimelas* split between 4.2–5.1 Mya, while we find it at 1.57 Mya. Similarly,
535 511 we estimate the divergence of *A. flavicollis* lineages at ~1.36 Mya, compared to 2.2–2.6 Mya in
536 512 earlier studies (Darvish et al., 2015; Michaux et al., 2004). Our divergence estimate between *A.*
537 513 *flavicollis* lineages aligns with Suzuki et al. (2008) who using a Bayesian approach without
538 514 external calibrations dated the split between *A. flavicollis* (our SI) and *A. ponticus* (our TR) to
539 515 0.4–1 Myr, though support varied across molecular markers. These discrepancies may stem from
540 516 differing calibration strategies: previous studies often used a fixed *Mus/Rattus* split at 12 Mya,
541 517 whereas we employed a murine-internal calibration based on fossil evidence more directly tied to
542 518 *Apodemus*. Additionally, we used a multispecies coalescent model, which accounts for gene tree
543 519 discordance and coalescent variance, potentially yielding more precise estimates of speciation
544 520 timing rather than gene divergence alone.

545 521 Collectively, our results emphasize the role of Miocene and Pliocene climatic shifts in
546 522 shaping major lineages of *Apodemus*, while Pleistocene climatic instability likely drove more
547 523 recent, finer-scale divergence across Europe and Anatolia.

548 524

549 525 Morphological divergence

550 526 For each morphological structure, significant differences in size and shape among all ten
551 527 *Apodemus* OTUs are found. *Apodemus mystacinus* and *A. epimelas* are in general the largest.
552 528 Within the group of *Sylvaemus* mice, *A. flavicollis* from Slovenia is the largest, followed by *A.*

554 529 *alpicola*, while *A. uralensis* from the Czech Republic is the smallest. Janžekovič and Kryštufek
555 530 (2004) found the same interspecific size pattern in their geometric morphometric study of upper
556 531 molar size and shape variation in six European *Apodemus* species (*A. agrarius*, *A. epimelas*, *A.*
557 532 *flavicollis*, *A. sylvaticus*, *A. uralensis* and *A. alpicola*). When analysing the cranial morphology
558 533 of six species of the subgenus *Sylvaemus* (*A. alpicola*, *A. flavicollis*, *A. hyrcanicus*, *A. sylvaticus*,
559 534 *A. uralensis* and *A. witherbyi*), Dúhová (2020) also observed the largest skulls in *A. flavicollis*
560 535 followed by *A. alpicola*; *A. uralensis* was the smallest in this respect. Differences in skull size
561 536 can be caused by various environmental conditions, especially the habitat quality and food
562 537 availability. Larger size can generally be influenced by less stress, e.g. the absence of predators
563 538 and competitors and the abundance of resources (Abramov et al., 2017). Skull size difference in
564 539 *Sylvaemus* mice could be linked to habitat, e.g., *A. uralensis* that is primarily associated with
565 540 open rocky environments (Denys et al., 2017) had the smallest skulls, while *A. flavicollis* mostly
566 541 living in more productive woodland habitats, the largest. Additionally, variation in body size
567 542 may be consistent with thermoregulatory expectations. For example, *A. alpicola*, which is
568 543 endemic to the Alpine region, is larger than other *Sylvaemus* species living in warm
569 544 environments. On the other hand, intraspecific size variation in *A. mystacinus* was positively
570 545 associated with the mean minimum January temperature, which is opposite to the predictions of
571 546 the Bergmann's rule (Yom-Tov and Geffen, 2006).

572 547 When looking at the shape variation, all OTU pairs differ significantly from each other,
573 548 except for the cranial shape variation in the *A. witherbyi* and *A. uralensis* pair from Turkey.
574 549 According to the average *Rsq* values, *A. mystacinus* shows the greatest differences in mandibular
575 550 shape variation, *A. epimelas* in cranial shape variation and *A. agrarius* in molar shape variation.
576 551 The highest classification accuracy of the OTUs is found for *A. alpicola* (97.3% for the mandible

578 552 and 100% for the cranium) and *A. agrarius* (100% for the molars). In terms of mandibular shape
579 553 variation, evident from both CVA and UPGMA, the subgenus *Karstomys* is the most distinct
580 554 from other congenerics, while in terms of molar shape variation, *A. agrarius* (the only Eurasian
581 555 representative of the subgenus *Apodemus*) is the most distinctive, followed by *Karstomys*. A
582 556 good agreement between the phenetic relationships in *Apodemus* with the molecular phylogeny
583 557 (Bellinvia, 2004; Michaux et al., 2002) and subgeneric taxonomy was found also by Frynta et al.
584 558 (2006). This statement also seems to apply to other body parts of *Apodemus*. Therefore, Kuncová
585 559 and Frynta (2009) clearly separated different subgenera in their study on the variability of
586 560 postcranial and body measurements of seven *Apodemus* species (*A. agrarius*, *A. mystacinus*, *A.*
587 561 *hyrcanicus*, *A. witherbyi*, *A. uralensis*, *A. flavicollis* and *A. sylvaticus*). They also reported that
588 562 multivariate distances based on size-adjusted data showed that the main pattern of morphometric
589 563 variation was similar to that of the molecular phylogeny. However, morphological differences
590 564 between species within *Sylvaemus* were small despite substantial differences in habitat
591 565 preferences (forests, steppe fields, rocks) and differences in locomotion (tendency to dig, jump,
592 566 climb) (Kuncová and Frynta, 2009). We find that within *Sylvaemus* the most distinct species is *A.*
593 567 *alpicola*, characterised by slender mandibles, an elongated rostrum, a constriction in the parietal
594 568 and zygomatic regions and a compressed braincase. Similar features of the cranial shape of *A.*
595 569 *alpicola* have been attributed to the diet of this species, i.e. the absence of hard tree seeds
596 570 (Reutter et al., 2005) and the higher proportion of insects in the diet (Dúhová, 2020).
597 571

598 572 **Phylogenetic signal in morphometric data**

599 573 According to mosaic evolution in a phylogenetic context, different morphological
600 574 structures or trait complexes may have evolved within a group of related organisms under

602 575 different scenarios (Cardini and Elton, 2008; Cole et al., 2002). We observe significant
603 576 phylogenetic structuring in the size and shape variation of each morphological structure
604 577 analysed, with the exception of cranial shape. Likewise, Jović et al. (2012) reported that the
605 578 phenetic relationships among four *Apodemus* species (*A. agrarius*, *A. epimelas*, *A. flavicollis*, and
606 579 *A. sylvaticus*) inferred from variation in mandibular shape better reflected phylogenetic
607 580 relationships than those inferred from differences in cranial shape. The lack of a statistically
608 581 significant phylogenetic signal suggests that related *Apodemus* OTUs are no more similar in
609 582 cranial shape than phylogenetically unrelated OTUs, so that the evolution of cranial shape is not
610 583 phylogenetically driven but rather depends on environmental factors. Therefore, the
611 584 morphological differences in cranial shape may be associated with a high degree of homoplasy,
612 585 which is determined by ecological constraints through ecophenotypic variation. However, in the
613 586 absence of modelling of causal factors (e.g., covariation between cranial shape variables and
614 587 geographic/environmental/ecological variables), this is only an assumption and not a definitive
615 588 statement. In a complex morphological structure such as the vertebrate cranium, which houses
616 589 the brain, part of the respiratory system, the masticatory apparatus and various sensory organs,
617 590 most anatomical components contribute to one or more functions. The anatomical components of
618 591 the cranium are thus integrated, so that functional adaptations in one component are likely to
619 592 affect other cranial regions. Therefore, cranial shape represents a mosaic of adaptations and is
620 593 generally poorly suited as a phylogenetic indicator (Grunstra et al., 2021). Moreover, a lack of
621 594 concordance between cranial shape variation and phylogeny does not necessarily imply
622 595 adaptation. It could be genetic drift or simply differences in the pace of evolution.

623 596 We discover a significant phylogenetic signal in the variation of mandibular and molar
624 597 tooth shape. Mandibles and teeth are both involved in food intake and feeding processes, and

626 598 such a functional interaction could lead to correlated divergence in response to selection
627 599 (Michaux et al., 2007). However, the observed pattern of morphological differentiation of
628 600 mandibles is not identical to that of molars, and only cluster analysis of molar shape confirms the
629 601 subdivision into three subgenera. This conclusion is consistent with previous results on molar
630 602 shape variation in six *Apodemus* species obtained in analyses using 2D landmarks on maxillary
631 603 molars (Janžekovič and Kryštufek, 2004) and geometric morphometrics of the outline of the first
632 604 upper molar (Helvaci and Çolak, 2021). We also find strong differences in molar shape between
633 605 *A. agrarius* and all other *Apodemus* OTUs, which is supported by our and other molecular
634 606 phylogenies (Balasanyan et al., 2018; Steppan and Schenk, 2017; Fabre et al., 2012; Bugarski-
635 607 Stanojević et al., 2011; Suzuki et al., 2008; Hoofer et al., 2007; Bellinvia, 2004; Michaux et al.,
636 608 2002). In agreement with the results of Janžekovič and Kryštufek (2004), *A. agrarius* is the most
637 609 distinct and is characterised by slimmer molars compared to other studied taxa. The highest
638 610 concordance between the phenogram constructed from molar shape data and our phylogenetic
639 611 tree suggests that molar shape is the most informative for phylogeny, while the observed
640 612 interspecific pattern of mandibular shape may be due to ecological factors interfering with the
641 613 pattern of genetic divergence. That mandibles and molars can provide a contradictory picture of
642 614 the evolution of *Apodemus* mice was shown by Ledevin et al. (2012), who demonstrated that the
643 615 mandibular shape of five Chinese *Apodemus* species (*A. peninsulae*, *A. uralensis*, *A. agrarius*, *A.*
644 616 *draco*, and *A. latronum*) appears to vary in response to local conditions, blurring any
645 617 phylogenetic or ecological pattern, while the evolution of molar shape appears to be primarily
646 618 determined by the degree of genetic differentiation.

647 619 As Caumul and Polly (2005) noted, the skull, mandible and teeth differ in their responses
648 620 to environmental selection pressures not only because of their different functions and the

650 621 different number of underlying genes that control their shape, but an important difference
651 622 between them is the different pattern of ontogenetic development. While the cranium and
652 623 mandible tend to undergo bone remodeling and respond plastically through growth even after the
653 624 animal is weaned (Renaud and Auffray, 2010; Renaud et al., 2010), molars, once erupted, are
654 625 only subject to wear, a process that only slightly affects the crown outline (Renaud, 2005). For
655 626 this reason, they are less sensitive to direct environmental influences (Le Devin et al., 2012),
656 627 exhibit less ecophenotypic variation (Rychlik et al., 2006; Renaud, 2005) and evolve more
657 628 slowly than the cranium and mandible. Based on a significant correlation between molar tooth
658 629 shape and cytochrome *b* gene sequence divergence in shrews and marmots, Polly (2003, 2001)
659 630 suggested that tooth morphology could serve as a proxy for phylogenetic divergence. A strong
660 631 correlation between genetic and morphological distances was found in molars of the murine
661 632 genus *Mus* (Le Devin et al., 2016; Macholán, 2006). Our study shows that molar shape contains a
662 633 considerable amount of phylogenetic information sufficient to clarify relationships at the
663 634 subgeneric level, but not at the species level. Morphometric data in general, no matter how
664 635 strong the phylogenetic signal they contain, are not suitable markers for the phylogenetic
665 636 reconstruction of a clade (Varón-González et al., 2020; Klingenberg and Gidaszewski, 2010).
666 637 This result is important not only from the taxonomic perspective of extant rodent species, but
667 638 also for reconstructing the evolutionary history of extinct species, most of which are known from
668 639 isolated molars.
669 640

CONCLUSION

672 642 In this study, we focused on the Western Palearctic species of the genus *Apodemus* and
673 643 adopted an integrated approach combining molecular phylogenetics with geometric
674 644 morphometrics. To investigate the contribution of phylogenetic signal and adaptive processes to
675 645 morphological variability in these rodents, we used mitochondrial and nuclear markers from
676 646 GenBank (cytochrome *b*, 12S rRNA, D-loop, *COI*, *IRBP*, *RAG1*, *I7*, *vWF*) and applied a two-
677 647 dimensional geometric morphometric analysis to the mandible, cranium and upper molars, three
678 648 anatomical structures traditionally used in studies of small mammal morphology. A phylogenetic
679 649 signal is evident in the size and shape variation of each morphological structure analysed, with
680 650 the exception of cranial shape, supporting a mosaic model of morphological evolution within
681 651 *Apodemus*. While morphometric data are less suitable than molecular data for reconstructing
682 652 phylogenies, molars stand out as a more reliable indicator of phylogenetic divergence than the
683 653 mandible or cranium. This is because molars are less influenced by environmental factors,
684 654 exhibit less ecophenotypic variation, and evolve more slowly. Consequently, molar shape
685 655 effectively distinguishes *Apodemus* subgenera and may have broader applications in other
686 656 rodents. This is particularly important for fossil taxa, where molar remains are often the only
687 657 material available and molecular data are unattainable, underscoring the value of molar
688 658 morphology for reconstructing evolutionary histories of extinct species and informing taxonomy
689 659 of extant rodents.

690 660

691 661 REFERENCES

692 662 Abramov, S.A., Lopatina, N.V., Litvinov, Y.N., 2017. Cranial size and shape variation in
693 663 isolated populations of the Olkhon mountain vole (*Alticola olchonensis* Litvinov, 1960).
694 664 Zoology 123: 91-100.

696 665 Balakirev, A.E., Baskevich, M.I., Gmyl, A.P., Okulova, N.M., Andreeva, T.A., Sokolenko, O.V.,
697 666 Malygin, V.M., Khlyap, L.A., Oparin, M.L., Orlov, V.N., 2007. On the taxonomic rank
698 667 of *ciscaucasicus* and its relationships with the pygmy wood mouse *Sylvaemus uralensis*
699 668 inferred from the mtDNA cytochrome *b* gene sequence. Russ. J. Genet. 43: 1386-1399.

700 669 Balasanyan, V., Yavruyan, E., Somerová, B., Abramjan, A., Landová, E., Munclinger, P.,
701 670 Frynta, D., 2018. High Diversity of mtDNA Haplotypes Confirms Syntopic Occurrence
702 671 of Two Field Mouse Species *Apodemus uralensis* and *A. witherbyi* (Muridae: Apodemus)
703 672 in Armenia. Russ. J. Genet. 54: 687-697.

704 673 Barčiová, L., Macholán, M., 2009. Morphometric key for the discrimination of two wood
705 674 micespecies, *Apodemus sylvaticus* and *A. flavicollis*. Acta Zool. Acad. Sci. Hung. 55: 31-
706 675 38.

707 676 Bellinvia, E., 2004. A phylogenetic study of the genus *Apodemus* by sequencing the
708 677 mitochondrial DNA control region. J. Zool. Syst. Evol. Res. 42: 289-297.

709 678 Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press,
710 679 Cambridge, UK.

711 680 Bouckaert, R.R., Drummond, A.J., 2017. bModelTest: Bayesian phylogenetic site model
712 681 averaging and model comparison. BMC Evol. Biol. 17: 42.

713 682 Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A.,
714 683 Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller,
715 684 N.F., Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni,
716 685 I., Suchard, M.A., Wu, C-H., Xie, D., Zhang, C., Stadler, T., Drummond, A.J., 2019.
717 686 BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS
718 687 Comp. Biol. 15: e1006650.

720 688 Bugarski-Stanojević, V., Blagojević, J., Stamenković, G., Adnađević, T., Giagia-
721 689 Athanasopoulou, E., Vujošević, M., 2011. Comparative study of the phylogenetic
722 690 structure in six *Apodemus* species (Mammalia, Rodentia) inferred from ISSR-PCR data.
723 691 *Syst. Biodivers.* 9: 95-106.

724 692 Burgin, C.J., Wilson, D.E., Mittermeier, R.A., Rylands, A.B., Lacher, T.E., Sechrest, W., 2020.
725 693 Illustrated Checklist of the Mammals of the World. Volume 1. Monotremata to Rodentia.
726 694 Lynx Editions, Barcelona, Spain.

727 695 Cardini, A., Elton, S., 2008. Does the skull carry a phylogenetic signal? Evolution and
728 696 modularity in the guenons. *Biol. J. Linn. Soc.* 93: 813-834.

729 697 Caumul, R., Polly, P.D., 2005. Phylogenetic and environmental components of morphological
730 698 variation: skull, mandible, and molar shape in marmots (*Marmota*, Rodentia). *Evolution*
731 699 59: 2460-2472.

732 700 Chelomina, G.N., Atopkin, D.M., 2010. Molecular genetic evidence of a deep phylogenetic
733 701 discontinuity between the asian and european races of pygmy wood mouse based on the
734 702 mitochondrial cytochrome *b* gene variation. *Mol. Biol.* 44: 699-708.

735 703 Çolak, R., Çolak, E., Yiğit, N., Kandemir, I., Sözen, M., 2007. Morphometric and biochemical
736 704 variation and the distribution of the genus *Apodemus* (Mammalia: Rodentia) in Turkey.
737 705 *Acta Zool. Acad. Sci. Hung.* 53: 239-256.

738 706 Cole, T.M., Lele, S., Richtsmeier, J.T., 2002. A parametric bootstrap approach to the detection of
739 707 phylogenetic signals in landmark data. In: Macleod, N., Forey, P (Eds.) *Morphology,*
740 708 *shape and phylogeny*. Taylor and Francis, London, UK. 194-219.

741 709 Darvish, J., Mohammadi, Z., Ghorbani, F., Mahmoudi, A., Dubey, S., 2015. Phylogenetic
742 710 Relationships of *Apodemus* Kaup, 1829 (Rodentia: Muridae) Species in the Eastern

744 711 Mediterranean Inferred from Mitochondrial DNA, with Emphasis on Iranian Species. J.
745 712 Mamm. Evol. 22: 583-595.

746 713 Darvish, J., Mohammadi, Z., Ghorbani, F., Mostafavi, E., 2014. Morphological Morphometric
747 714 Characterisation of the Eastern Broad-toothed Field Mouse *Apodemus mystacinus*
748 715 (Rodentia: Muridae) from Zagros Mountains, north-western Iran. Acta Zool. Bulg. 66:
749 716 461-468.

750 717 Denys, C., Taylor, P. J., Aplin, P., 2017. Family Muridae (true mice and rats, gerbils and
751 718 relatives). In: Wilson, D.E., Lacher, T.E., Mittermeier, R.A (Eds.) Handbook of the
752 719 mammals of the world, Volume 7: Rodents II. Lynx Editions, Barcelona, Spain. 536-886.

753 720 Douglas, J., Jiménez-Silva, C.L., Bouckaert, R., 2022. StarBeast3: Adaptive Parallelized
754 721 Bayesian Inference under the Multispecies Coalescent. Syst. Biol. 71: 901-916.

755 722 Dryden, I.L., Mardia, K.V., 1998. Statistical Shape Analysis. John Wiley and Sons, New York,
756 723 USA.

757 724 Dubey, S., Michaux, J., Brünner, H., Hutterer, R., Vogel, P., 2009. False phylogenies on wood
758 725 mice due to cryptic cytochrome-*b* pseudogene. Mol. Phylogen. Evol. 50: 633-641.

759 726 Dúhová, K., 2020. Phylogeny and cranial geometric morphometry of selected *Apodemus* species
760 727 (Rodentia: Murinae). M.Sc. thesis, Faculty of Science, Masaryk University, Brno, Czech
761 728 Republic.

762 729 Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
763 730 throughput. Nucleic Acids Res. 32: 1792-1797.

764 731 Edginton, E.S., 1995. Randomization Tests. Marcel Dekker, New York, USA.

765 732 Fabre, P-H., Hautier, L., Dimitrov, D., Douzery, E.J.P., 2012. A glimpse on the pattern of rodent
766 733 diversification: a phylogenetic approach. Evol. Biol. 12: 88.

768 734 Felsenstein, J., 2002. Quantitative characters, phylogenies, and morphometrics. In: MacLeod, N.,
769 735 Forey, P (Eds.) Morphology, shape, and phylogeny. Taylor and Francis, London, UK. 27-
770 736 44.

771 737 Filippucci, M.G., Storch, G., Macholán, M., 1996. Taxonomy of the genus *Sylvaemus* in western
772 738 Anatolia—morphological and electrophoretic evidence (Mammalia: Rodentia: Muridae).
773 739 Senckenb. Biol. 75: 1-14.

774 740 Frynta, D., Mikulová, P., Vohralík, V., 2006. Skull shape in the genus *Apodemus*: phylogenetic
775 741 conservatism and/or adaptation to local conditions. Acta Theriol. 51: 139-153.

776 742 Ge, D., Feijó, A., Cheng, J., Lu, L., Liu, R., Abramov, A. V., Xia, L., Wen, Z., Zhang, W., Shi,
777 743 L., Yang, Q., 2019. Evolutionary history of field mice (Murinae: *Apodemus*), with
778 744 emphasis on morphological variation among species in China and description of a new
779 745 species. Zool. J. Linn. Soc. 187: 518-534.

780 746 Good, P., 1994. Permutation Test: A Practical Guide to Resampling Methods for Testing
781 747 Hypotheses. Springer-Verlag, New York, USA.

782 748 Grunstra, N.D.S., Bartsch, S.J., Le Maître, A., Mitteroecker, P., 2021. Detecting phylogenetic
783 749 signal and adaptation in papionin cranial shape by decomposing variation at different
784 750 spatial scales. Syst. Biol. 70: 694-706.

785 751 Helvaci, Z., Çolak, E., 2021. New Data on the Taxonomy of the Genus *Apodemus* Kaup, 1829
786 752 (Mammalia: Rodentia) in Turkey: a Geometric Morphometric Approach. Acta Zool.
787 753 Bulg. 73: 503-509.

788 754 Herman, J.S., Jóhannesdóttir, F., Jones, E.P., McDevitt, A.D., Michaux, J.R., White, T.A.,
789 755 Wójcik, J.M., Searle, J.B., 2017. Post-glacial colonization of Europe by the wood mouse,

791 756 *Apodemus sylvaticus*: evidence of a northern refugium and dispersal with humans. Biol. J.
792 757 Linn. Soc. 120: 313-332.

793 758 Hille, A., Tarkhnishvili, D., Meinig, H., Hutterer, R., 2002. Morphometric, biochemical and
794 759 molecular traits in Caucasian wood mice (*Apodemus/Sylvaemus*), with remarks on species
795 760 divergence. Acta Theriol. 47: 389-416.

796 761 Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh L.S., 2018. UFBoot2:
797 762 Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518-522.

798 763 Hoofer, S.R., Gaschak, S., Dunina-Barkovskaya, Y., Makluk, J., Meeks, H.N., Wickliffe, J.K.,
799 764 Baker, R.J., 2007. New information for systematics, taxonomy, and phylogeography of
800 765 the rodent genus *Apodemus* (*Sylvaemus*) in Ukraine. J. Mammal. 88: 330-342.

801 766 IBM Corp., 2017. IBM SPSS Statistics for Windows, Version 25. Armonk, NY: IBM Corp.

802 767 Janžekovič, F., Kryštufek, B., 2004. Geometric morphometry of the upper molars in European
803 768 wood mice *Apodemus*. Folia Zool. 53: 47-55.

804 769 Jojić, V., Bugarski-Stanojević, V., Blagojević, J., Vujošević, M., 2014. Discrimination of the
805 770 sibling species *Apodemus flavicollis* and *A. sylvaticus* (Rodentia, Muridae). Zool. Anz.
806 771 253: 261-269.Jojić, V., Nenadović, J., Blagojević, J., Paunović, M., Cvetković, D.,
807 772 Vujošević, M., 2012. Phenetic relationships among four *Apodemus* species (Rodentia,
808 773 Muridae) inferred from skull variation. Zool. Anz. 251: 26-37.

809 774 Kerr, E., Cornette, R., Gomes Rodrigues, H., Renaud, S., Chevret, P., Tresset, A., Herrel, A.,
810 775 2017. Can functional traits help explain the coexistence of two species of *Apodemus*?
811 776 Biol. J. Linn. Soc. 122: 883-896.

813 777 Kimura, Y., Flynn, L.J., Jacobs, L.L., 2017. Early late miocene murine rodents from the upper
814 778 part of the Nagri formation, Siwalik group, Pakistan, with a new fossil calibration point
815 779 for the Tribe Apodemurini (*Apodemus/Tokudaia*). *Foss. Impr.* 73: 197-212.

816 780 Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics.
817 781 *Mol. Ecol. Resour.* 11: 353-357.

818 782 Klingenberg, C.P., 2013. Visualizations in geometric morphometrics: how to read and how to
819 783 make graphs showing shape changes. *Hystrix* 24: 15.

820 784 Klingenberg, C.P., Gidaszewski, N.A., 2010. Testing and quantifying phylogenetic signals and
821 785 homoplasy in morphometric data. *Syst. Biol.* 59: 245-261.

822 786 Knitlova, M., Horaček, I., 2017. Late Pleistocene-Holocene paleobiogeography of the genus
823 787 *Apodemus* in Central Europe. *PLoS One* 12: e0173668.

824 788 Kryštufek, B., Janžekovič, F., Hutterer, R., Klenovšek, T., 2016. Morphological evolution of the
825 789 skull in closely related bandicoot rats: a comparative study using geometric
826 790 morphometrics. *Hystrix* 27: 163-169.

827 791 Kryštufek, B., Lužník, M., Buzan, E.V., 2012. Mitochondrial cytochrome *b* sequences resolve
828 792 the taxonomy of field mice (*Apodemus*) in the western Balkan refugium. *Acta Theriol.*
829 793 57: 1-7.

830 794 Kryštufek, B., Vohralík, V., 2009. Mammals of Turkey and Cyprus. Rodentia II: Cricetinae,
831 795 Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae. Založba
832 796 Annales, Koper, Slovenia.

833 797 Kryštufek, B., Stojanovski, L., 1996. *Apodemus sylvaticus stankovici* is a synonym of *Apodemus*
834 798 *flavicollis*. *Folia Zool.* 45: 1-7.

836 799 Kuncová, P., Frynta, D., 2009. Interspecific morphometric variation in the postcranial skeleton in
837 800 the genus *Apodemus*. Belg. J. Zool. 139: 133-146.

838 801 Lachenbruch, P.A., 1967. An almost unbiased method of obtaining confidence intervals for the
839 802 probability of misclassification in discriminant analysis. Biometrics 23: 639-645.

840 803 Lalis, A., Leblois, R., Liefried, S., Ouarour, A., Beeravolu, C.R., Michaux, J., Hamani, A.,
841 804 Denys, C., Nicolas, V., 2016. New molecular data favour an anthropogenic introduction
842 805 of the wood mouse (*Apodemus sylvaticus*) in North Africa. J. Zool. Syst. Evol. Res. 54:
843 806 1-12.

844 807 Latinne, A., Navascués, M., Pavlenko, M., Kartavtseva, I., Ulrich, R.G., Tiouchichine, M-L.,
845 808 Catteau, G., Sakka, H., Quéré, J-P., Chelomina, G., Bogdanov, A., Stanko, M., Hang, L.,
846 809 Neumann, K., Henttonen, H., Michaux, J., 2020. Phylogeography of the striped field
847 810 mouse, *Apodemus agrarius* (Rodentia: Muridae), throughout its distribution range in the
848 811 Palaeartic region. Mamm. Biol. 100: 19-31.

849 812 Larsson, A., 2014. AliView: a fast and lightweight alignment viewer and editor for large data
850 813 sets. Bioinformatics 30: 3276-3278.

851 814 Ledevin, R., Chevret, P., Ganem, G., Britton-Davidian, J., Hardouin, E.A., Chapuis, J-L., Pisanu,
852 815 B., Mathias, M.D.L., Schlager, S., Auffray, J-C., Renaud, S., 2016. Phylogeny and
853 816 adaptation shape the teeth of insular mice. Proc. R. Soc. B283: 20152820.

854 817 Ledevin, R., Quéré, J-P., Michaux, J.R., Renaud, S., 2012. Can tooth differentiation help to
855 818 understand species coexistence? The case of wood mice in China. J. Zool. Syst. Evol.
856 819 Res. 50: 315-327.

858 820 Liu, Q., Chen, P., He, K., Kilpatrick, C. W., Liu, S-Y., Yu, F-H., Jiang, X-L., 2012.
859 821 Phylogeographic study of *Apodemus iley* (Rodentia: Muridae) in southwest China. PLoS
860 822 One 7: e31453.

861 823 Liu, X., Wei, F., Li, M., Jiang, X., Feng, Z., Hu, J., 2004. Molecular phylogeny and taxonomy of
862 824 wood mice (genus *Apodemus* Kaup, 1829) based on complete mtDNA cytochrome *b*
863 825 sequences, with emphasis on Chinese species. Mol. Phylogen. Evol. 33: 1-15.

864 826 Liu, L., Yu, L., Kubatko, L., Pearl, D.K., Edwards, S.V., 2009. Coalescent methods for
865 827 estimating phylogenetic trees. Mol. Phylogen. Evol. 53: 320-328.

866 828 Lu, X., Ge, D., Xia, L., Huang, C., Yang, Q., 2014. Geometric morphometric study of the skull
867 829 shape diversification in Sciuridae (Mammalia, Rodentia). Integr. Zool. 9: 231-245.

868 830 Macholán, M., 2006. A geometric morphometric analysis of the shape of the first upper molar in
869 831 mice of the genus *Mus* (Muridae, Rodentia). J. Zool. 270: 672-681.

870 832 Martin, Y., Gerlach, G., Schlötterer, C., Meyer, A., 2000. Molecular phylogeny of european
871 833 muroid rodents based on complete cytochrome *b* sequences. Mol. Phylogen. Evol. 16: 37-
872 834 47.

873 835 Martín-Suárez, E., Mein, R., 1998. Revision of the genera *Parapodemus*, *Apodemus*, *Rhagarnys*
874 836 and *Rhagapodemus* (Rodentia, Mammalia). GEOBIOS 31: 87-97.

875 837 Mezhzherin, S.V., Tereshchenko, V.O., 2023. Taxonomic Hierarchy and Evolutionary Scenario
876 838 of the Genus Group *Apodemus* s. l. (Muridae) of the Palaearctic based on Genetic
877 839 Differentiation in the cyt-b Gene. Zoodiversity 57: 1-12.

878 840 Michaux, J.R., Bellinvia, E., Lymberakis, P., 2005. Taxonomy, evolutionary history and
879 841 biogeography of the broad-toothed field mouse (*Apodemus mystacinus*) in the eastern

881 842 Mediterranean area based on mitochondrial and nuclear genes. Biol. J. Linn. Soc. 85: 53-

882 843 63.

883 844 Michaux, J.R., Chevret, P., Filippucci, M-G., Macholan, M., 2002. Phylogeny of the genus

884 845 *Apodemus* with a special emphasis on the subgenus *Sylvaemus* using the nuclear IRBP

885 846 gene and two mitochondrial markers: cytochrome *b* and 12S rRNA. Mol. Phylogen.

886 847 Evol. 23: 123-136.

887 848 Michaux, J., Chevret, P., Renaud, S., 2007. Morphological diversity of Old World rats and mice

888 849 (Rodentia, Muridae) mandible in relation with phylogeny and adaptation. J. Zool. Syst.

889 850 Evol. Res. 45: 263-279.

890 851 Michaux, J., Kinet, S., Filippucci, M.-G., Libois, R., Besnard, A., Catzeflis, F., 2001. Molecular

891 852 identification of three sympatric species of wood mice (*Apodemus sylvaticus*, *A.*

892 853 *flavicollis*, *A. alpicola*) in western Europe (Muridae: Rodentia). Mol. Ecol. Notes 1: 260-

893 854 263.

894 855 Michaux, J.R., Libois, R., Paradis, E., Filippucci, M-G., 2004. Phylogeographic history of the

895 856 yellow-necked field mouse (*Apodemus flavicollis*) in Europe and in the Near and

896 857 Middle East. Mol. Phylogen. Evol. 32: 788-798.

897 858 Michaux, J.R., Magnanou, E., Paradis, E., Nieberding, C., Libois, R., 2003. Mitochondrial

898 859 phylogeography of the Wood mouse (*Apodemus sylvaticus*) in the Western Palearctic

899 860 region. Mol. Ecol. 12: 685-697.

900 861 Musser, G.G., Brothers, E.M., Carleton, M.D., Hutterer, R., 1996. Taxonomy and distributional

901 862 records of Oriental and European *Apodemus*, with a review of the *Apodemus-Sylvaemus*

902 863 problem. BzB46: 143-190.

904 864 Musser, G.G., Carleton, M.D., 2005. Superfamily Muroidea. In: Wilson, D.E., Reeder, D.M
905 865 (Eds.) *Mammal species of the world: a taxonomic and geographic reference*. Johns
906 866 Hopkins University Press, Baltimore, USA. 894-1531.

907 867 Niethammer, J., 1969. Zur frage der introgression bei den waldmäusen *Apodemus sylvaticus* und
908 868 *A. flavicollis* (Mammalia, Rodentia). *Zeitschrift Zoologische Systematik*
909 869 *Evolutionsforschung* 7: 77-127.

910 870 Okulova, N.M., Bogdanov, A.S., Baskevich, M.I., Orlov, V.N., Antonets, N.V., Popova, Yu.V.,
911 871 Lavrenchenko, L.A., 2019. Skull Sizes and Proportions in Western Palearctic Wood Mice
912 872 (*Sylvaemus*, Muridae, Rodentia) from Eastern Europe: 1. Interspecific Variability. *Biol.*
913 873 *Bull.* 46: 973-987.

914 874 Olgun Karacan, G., 2023. Uncovering hidden diversity: new phylogeographic pattern of
915 875 *Apodemus mystacinus* (Danford and Alston, 1877) in Turkey and Iran. *Russ. J. Genet.* 59:
916 876 53-60.

917 877 Polly, P.D., 2001. On morphological clocks and paleophylogeography: towards a timescale for
918 878 *Sorex* hybrid zones. *Genetica* 112: 339-357.

919 879 Polly, P.D., 2003. Paleophylogeography: the tempo of geographic differentiation in marmots
920 880 (*Marmota*). *J. Mammal.* 84: 369-384.

921 881 Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior
922 882 summarization in Bayesian phylogenetics using Tracer 1.7. *Syst. Biol.* 67: 901-904.

923 883 Renaud, S., 2005. First upper molar and mandible shape of wood mice (*Apodemus sylvaticus*)
924 884 from northern Germany: ageing, habitat and insularity. *Mamm. Biol.* 70: 157-170.

925 885 Renaud, S., Auffray, J-C., 2010. Adaptation and plasticity in insular evolution of the house
926 886 mouse mandible. *J. Zool. Syst. Evol. Res.* 48: 138-150.

928 887 Renaud, S., Auffray, J-C., de La Porte, S., 2010. Epigenetic effects on the mouse mandible:
929 888 common features and discrepancies in remodeling due to muscular dystrophy and
930 889 response to food consistency. *BMC Evol. Biol.* 20: 18.

931 890 Renaud, S., Chevret, P., Michaux, J., 2007. Morphological vs. molecular evolution: Ecology and
932 891 phylogeny, both shape the mandible of rodents. *Zool. Scr.* 36: 525-535.

933 892 Renaud, S., Michaux, J.R., 2003. Adaptive latitudinal trends in the mandible shape of *Apodemus*
934 893 wood mice. *J. Biogeogr.* 30: 1617-1628.

935 894 Reutter, B.A., Bertouille, E., Vogel, P., 2005. The diet of the Alpine mouse *Apodemus alpicola*
936 895 in the Swiss Alps. *Mamm. Biol.* 70: 147-155.

937 896 Reutter, B.A., Petit, E., Brünner, H., Vogel, P., 2003. Cytochrome *b* haplotype divergences in
938 897 West European *Apodemus*. *Mamm. Biol.* 68: 153-164.

939 898 Revell, L.J., 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods
940 899 (and other things). *PeerJ* 12: e16505.

941 900 Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. *J. Classif.* 16:
942 901 197-223.

943 902 Rohlf, F.J., 2015a. TpsDig. Version 2.30. Department of Ecology and Evolution, State
944 903 University of New York, Stony Brook NY, USA.

945 904 Rohlf, F.J., 2015b. The tps series of software. *Hystrix* 26: 9-12.

946 905 Rohlf, F.J., Marcus, L.F., 1993. A revolution in morphometrics. *TREE* 8: 129-132.

947 906 Rohlf, F.J., Slice, D., 1990. Extensions of the Procrustes method for the optimal superimposition
948 907 of landmarks. *Syst. Zool.* 39: 40-59.

950 908 Rychlik, L., Ramalhinho, G., Polly, P.D., 2006. Response to environmental factors and
951 909 competition: skull, mandible and tooth shapes in Polish water shrews (*Neomys*, Soricidae,
952 910 Mammalia). *J. Zool. Syst. Evol. Res.* 44: 339-351.

953 911 Schenk, J.J., Rowe, K.C., Steppan, S.J., 2013. Ecological opportunity and incumbency in the
954 912 diversification of repeated continental colonizations by muroid rodents. *Syst. Biol.* 62:
955 913 837-864.

956 914 Steppan, S.J., Schenk, J.J., 2017. Muroid rodent phylogenetics: 900-species tree reveals
957 915 increasing diversification rates. *PLoS One* 12: e0183070.

958 916 Suzuki, H., Filippucci, M.G., Chelomina, G.N., Sato, J.J., Serizawa, K., Nevo, A., 2008. A
959 917 Biogeographic View of *Apodemus* in Asia and Europe Inferred From Nuclear and
960 918 Mitochondrial Gene Sequences. *Biochem. Genet.* 46: 329-346.

961 919 Suzuki, H., Sato, J.J., Tsuchiya, K., Luo, J., Zhang, Y-P., Wang, Y-X., Jiang, X-L., 2003.
962 920 Molecular phylogeny of wood mice (*Apodemus*, Muridae) in East Asia. *Biol. J. Linn.
963 921 Soc.* 80: 469-481.

964 922 Suzuki, Y., Tomozawa, M., Koizumi, Y., Tsuchiya, K., Suzuki, H., 2015. Estimating the
965 923 molecular evolutionary rates of mitochondrial genes referring to Quaternary ice age
966 924 events with inferred population expansions and dispersals in Japanese *Apodemus*. *BMC
967 925 Evol. Biol.* 15: 187.

968 926 Tvrtković, N., 1979. Unterscheidung und determination der «zwillingsarten» aus subgenus
969 927 *Sylvemus* Ognev et Vorobiev, 1923 (Rodentia, Mammalia). RAD Jugoslovenske
970 928 akademije znanosti i umjetnosti, Razred za prirodne znanosti 383: 155-186 (in Croatian
971 929 with German summary).

973 930 Varón-González, C., Whelan, S., Klingenberg, C.P., 2020. Estimating phylogenies from shape
974 931 and similar multidimensional data: why it is not reliable. *Syst. Biol.* 69: 863-883.

975 932 Vaughan, T.G., 2017. IcyTree: Rapid browser-based visualization for phylogenetic trees and
976 933 networks. *Bioinformatics* 33: 2392-2394.

977 934 Wong, T.K.F., Ly-Trong, N., Ren, H., Banos, H., Roger, A.J., Susko, E., Bielow, C., De Maio,
978 935 N., Goldman, N., Hahn, M.W., Huttley, G., Lanfear, R., Minh B.Q., 2025. IQ-TREE 3:
979 936 Phylogenomic Inference Software using Complex Evolutionary Models. Submitted.
980 937 <https://ecoevrxiv.org/repository/view/8916/>

981 938 Yalkovskaya, L., Sibiryakov, P., Borodin, A., 2022. Phylogeography of the striped field mouse
982 939 (*Apodemus agrarius* Pallas, 1771) in light of new data from central part of Northern
983 940 Eurasia. *PLoS One* 17: e0276466.

984 941 Yalkovskaya, L.E., Sibiryakov, P.A., Zykov, S.V., 2018. Genetic variability in the yellow-
985 942 necked field mouse (*Sylvaemus flavigollis* Melch., 1834, Muridae, Rodentia) at the
986 943 eastern border of the range. *Russ. J. Genet.* 54: 643-651.

987 944 Yom-Tov, Y., Geffen, E., 2006. Geographic variation in body size: the effects of ambient
988 945 temperature and precipitation. *Oecologia* 148: 213-218.

989 946 Zwickl, D.J., Hillis, D.M., 2002. Increased Taxon Sampling Greatly Reduces Phylogenetic Error
990 947 (K Crandall, Ed.). *Syst. Biol.* 51: 588-598.

991 948

993 949 **Table 1.** Localities and sample sizes (N) of *Apodemus* spp. male (M), female (F) and unknown
 994 950 sex (U) specimens (mandibles, crania, and upper molars) analysed in this study.

995	Species	Locality	OTU	Mandible	Cranium	Molars
				N	N	N
				(M, F, U)	(M, F, U)	(M, F, U)
998	<i>A. agrarius</i>	Primorska (Slovenia)	<i>A. agrarius</i>	27 (2, 3, 22)	26 (2, 3, 21)	26 (2, 3, 21)
999	<i>A. alpicola</i>	Silbertal, Pfunds (Austria)	<i>A. alpicola</i>	37 (12, 15, 10)	31 (12, 15, 4)	34 (11, 13, 10)
1000	<i>A. flavicollis</i>	Kočevski Rog (Slovenia)	<i>A. flavicollis</i> SI	29 (0, 0, 29)	30 (0, 0, 30)	31 (0, 0, 31)
1001		Anatolia (Turkey)	<i>A. flavicollis</i> TR	20 (11, 6, 3)	20 (13, 6, 1)	22 (13, 6, 3)
1002	<i>A. sylvaticus</i>	Sečoveljske soline, Kranjska gora (Slovenia)	<i>A. sylvaticus</i>	24 (1, 4, 19)	26 (1, 4, 21)	25 (1, 4, 20)
1003	<i>A. uralensis</i>	Hodonin (Czech Republic)	<i>A. uralensis</i> CZ	18 (10, 4, 4)	24 (12, 8, 4)	25 (12, 8, 5)
1004		Anatolia (Turkey)	<i>A. uralensis</i> TR	25 (12, 10, 3)	29 (15, 10, 4)	32 (15, 9, 8)
1005	<i>A. witherbyi</i>	Anatolia (Turkey)	<i>A. witherbyi</i>	26 (17, 7, 2)	27 (20, 7, 0)	29 (20, 7, 2)
1006	<i>A. epimelas</i>	Pelješac (Croatia), Dodoši (Montenegro)	<i>A. epimelas</i>	28 (5, 3, 20)	33 (9, 4, 20)	35 (9, 4, 22)
1007	<i>A. mystacinus</i>	Anatolia (Turkey)	<i>A. mystacinus</i>	30 (16, 11, 3)	29 (16, 10, 3)	27 (16, 9, 2)
1008	Total			264	275	286

1019 951

1021 952 **Table 2.** Classification accuracy (in %) obtained by Discriminant Function Analysis, assessed
 1022 953 using leave-one-out cross-validation, of OTUs for the mandible.

		{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	Total
1023												
1024	<i>A. agrarius</i> {1}	92.6	0.0	0.0	3.7	0.0	0.0	0.0	0.0	3.7	0.0	100.0
1025	<i>A. alpicola</i> {2}	2.7	97.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
1026	<i>A. sylvaticus</i> {3}	0.0	0.0	66.7	4.2	0.0	0.0	12.5	12.5	0.0	4.2	100.0
1027	<i>A. witherbyi</i> {4}	0.0	0.0	7.7	61.5	3.8	0.0	7.7	3.8	3.8	11.5	100.0
1028	<i>A. epimelas</i> {5}	0.0	0.0	0.0	3.6	96.4	0.0	0.0	0.0	0.0	0.0	100.0
1029	<i>A. mystacinus</i> {6}	0.0	0.0	0.0	0.0	3.3	96.7	0.0	0.0	0.0	0.0	100.0
1030	<i>A. flavicollis</i> SI {7}	0.0	0.0	10.3	10.3	3.4	0.0	69.0	3.4	0.0	3.4	100.0
1031	<i>A. flavicollis</i> TR {8}	0.0	0.0	0.0	20.0	0.0	0.0	20.0	60.0	0.0	0.0	100.0
1032	<i>A. uralensis</i> CZ {9}	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.3	5.6	100.0
1033	<i>A. uralensis</i> TR {10}	0.0	0.0	4.0	8.0	0.0	0.0	4.0	4.0	4.0	76.0	100.0

1034 954

1035 955

1037 956 **Table 3.** Classification accuracy (in %) obtained by Discriminant Function Analysis, assessed
 1038 957 using leave-one-out cross-validation, of OTUs for cranium.

		{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	Total
1039												
1040	<i>A. agrarius</i> {1}	96.2	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	100.0
1041	<i>A. alpicola</i> {2}	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
1042	<i>A. sylvaticus</i> {3}	0.0	0.0	92.3	0.0	0.0	0.0	0.0	0.0	3.8	3.8	100.0
1043	<i>A. witherbyi</i> {4}	0.0	0.0	0.0	63.0	0.0	0.0	0.0	0.0	0.0	37.0	100.0
1044	<i>A. epimelas</i> {5}	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
1045	<i>A. mystacinus</i> {6}	0.0	0.0	0.0	0.0	0.0	96.6	0.0	3.4	0.0	0.0	100.0
1046	<i>A. flavicollis</i> SI {7}	0.0	0.0	3.3	0.0	0.0	0.0	76.7	10.0	10.0	0.0	100.0
1047	<i>A. flavicollis</i> TR {8}	5.0	0.0	0.0	10.0	0.0	0.0	5.0	60.0	5.0	15.0	100.0
1048	<i>A. uralensis</i> CZ {9}	4.2	0.0	0.0	8.3	0.0	0.0	12.5	8.3	54.2	12.5	100.0
1049	<i>A. uralensis</i> TR {10}	0.0	0.0	0.0	10.3	0.0	0.0	6.9	13.8	13.8	55.2	100.0

1050 958

1051 959

1053 960 **Table 4.** Classification accuracy (in %) obtained by Discriminant Function Analysis, assessed
 1054 961 using leave-one-out cross-validation, of OTUs for upper molars.

		{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	Total
1055												
1056	<i>A. agrarius</i> {1}	100.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	100.0
1057	<i>A. alpicola</i> {2}	0.0	70.6	0.0	5.9	0.0	0.0	0.0	2.9	2.9	17.6	100.0
1058	<i>A. sylvaticus</i> {3}	0.0	0.0	44.0	20.0	0.0	0.0	8.0	16.0	12.0	0.0	100.0
1059	<i>A. witherbyi</i> {4}	0.0	10.3	6.9	62.1	6.9	0.0	0.0	6.9	0.0	6.9	100.0
1060	<i>A. epimelas</i> {5}	0.0	0.0	0.0	2.9	91.4	2.9	2.9	0.0	0.0	0.0	100.0
1061	<i>A. mystacinus</i> {6}	0.0	0.0	0.0	3.7	11.1	63.0	18.5	0.0	0.0	3.7	100.0
1062	<i>A. flavicollis</i> SI {7}	0.0	3.2	9.7	3.2	3.2	6.5	64.5	9.7	0.0	0.0	100.0
1063	<i>A. flavicollis</i> TR {8}	0.0	4.5	9.1	4.5	0.0	4.5	22.7	40.9	0.0	13.6	100.0
1064	<i>A. uralensis</i> CZ {9}	0.0	4.0	8.0	0.0	0.0	0.0	4.0	0.0	80.0	4.0	100.0
1065	<i>A. uralensis</i> TR {10}	0.0	6.3	6.3	0.0	0.0	3.1	6.3	0.0	3.1	75.0	100.0

1066 962

1067 963

1068

48

1069 964 **Table 5.** Phylogenetic signal in morphometric data. Tree lengths are calculated by weighted
1070 965 squared-change parsimony and *P* values are from permutation tests against the null hypothesis of
1071 966 no phylogenetic signal.

	Size (centroid size)		Shape (Procrustes coordinates)		
	Tree length	<i>P</i> value	Tree length	<i>P</i> value	
1073					
1074	mandible	7.8898	0.0243	0.0055	0.0215
1075	cranium	34.6699	0.0205	0.0021	0.3135
1076	upper molars	0.8895	0.0177	0.0047	0.0023

1077 967

1078 968

1079

49

1080 969 **Figure 1.** Landmarks collected on images of the mandible in labial view (A), cranium in ventral
1081 970 view (B), and upper molars in occlusal view (C).

1082 971 **Figure 2.** The maximum clade credibility phylogenetic relationship of a tribus Apodemini from
1083 972 the Western Palearctic inferred by Bayesian multispecies multilocus coalescent analyses in
1084 973 BEAST 2. Apodemini MRCA calibration point of about 10.7 Myr was used after Kimura et al.
1085 974 (2017). Node bars indicate the 95% credible interval of the posterior density of divergence times
1086 975 which is expressed in millions of years (Myr) ago since presence. The posterior median of
1087 976 divergence times are in bold, depicted on the left-hand side of each node, while posterior support
1088 977 for node splits are on the right-hand side of each node. *Apodemus* subgenera are colored as:
1089 978 *Sylvaemus* (green), *Karstomys* (blue) and *Apodemus* (red).

1090 979
1091 980 **Figure 3.** CVA scatterplots of the first and second CV axes for the mandible. Shape changes
1092 981 along CV axes are visualized by warped outline drawings that are magnified two times.

1093 982 **Figure 4.** CVA scatterplots of the first and second CV axes for the cranium. Shape changes
1094 983 along CV axes are visualized by warped outline drawings that are magnified two times.

1095 984 **Figure 5.** CVA scatterplots of the first and second CV axes for upper molars. Shape changes
1096 985 along CV axes are visualized by warped outline drawings that are magnified two times.

1097 986
1098 987 **Figure 6.** Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA
1099 988 phenogram based on Procrustes distances among mean OTU mandibular shapes (right).
1100 989 Horizontal red lines connect corresponding taxa across the two trees. Mean mandibular shapes
1101 990 for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the
1102 991 UPGMA phenogram. **Figure 7.** Co-phylogenetic comparison between the MSC phylogeny (left)
1103

1104 992 and the UPGMA phenogram based on Procrustes distances among mean OTU cranial shapes
1105 993 (right). Horizontal red lines connect corresponding taxa across the two trees. Mean cranial
1106 994 shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside
1107 995 the UPGMA phenogram. **Figure 8.** Co-phylogenetic comparison between the MSC phylogeny
1108 996 (left) and the UPGMA phenogram based on Procrustes distances among mean OTU molar
1109 997 shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean molar
1110 998 shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside
1111 999 the UPGMA phenogram.
1112 1000

SUPPORTING INFORMATION

1114 1001
1115 1002 **Supplementary material S1.** Excel file provides a list of mitochondrial cytochrome *b* sequences
1116 1003 obtained from GenBank and used in this study to reconstruct the maximum likelihood
1117 1004 phylogenies of *Apodemus flavicollis* (Sheet 1) and *Apodemus uralensis* (Sheet 2). In both sheets,
1118 1005 the "accession" column lists the GenBank accession numbers used to retrieve each sequence. The
1119 1006 "organism" column indicates the species name as recorded in GenBank. The "geo_loc" column
1120 1007 specifies the geographic origin of the sample, while "seq_len" gives the length of the sequence in
1121 1008 base pairs. In the *flavicollis* sheet, the "genetic_lineage" column assigns each sequence to a
1122 1009 genetic lineage (e.g., European or Middle Eastern) based on its phylogenetic placement in this
1123 1010 study. The "reference" column provides the citation for the original study that published the
1124 1011 sequence, where available. The *uralensis* sheet contains the same structure, but lacks the
1125 1012 "genetic_lineage" column, reflecting the lack of geographic structuring in the genetic data for
1126 1013 this species.

1127 1014 **Supplementary material S2.** Excel file provides detailed information on sequences used in the
1128 1015 multispecies multilocus coalescent analysis (MSC) in this study. File is organized into three
1129 1016 sheets: sequences, sample structure by gene, and reference list. The sequences sheet contains
1130 1017 metadata for all specimens analysed. The "Taxon" column lists the species identification of each
1131 1018 sample, while the "os" column indicates whether the species is represented in our morphometric
1132 1019 dataset (yes/no). The column "used_in_phylogenetic_analysis" specifies whether the sample was
1133 1020 included in the final MSC phylogenetic reconstruction. The following columns "cyt b", "IRBP",
1134 1021 "RAG1", "I7", "vWF", "12S rRNA", "D-loop", and "COI" contain GenBank accession numbers
1135 1022 for each gene, or "-" if the sequence is missing. The column "missing (%)" shows the percentage
1136 1023 of missing loci per specimen. "Specimen" and "isolate" refer to individual sample identifiers,
1137

1138 1024 while "origin" provides information on the geographic origin of the sample. The "reference"
1139 1025 column lists numeric codes corresponding to the source of each sequence, as detailed in the
1140 1026 reference list sheet. Additional sample-specific information is provided in the "comment"
1141 1027 column. The sample structure by gene sheet summarizes the completeness of genetic data across
1142 1028 all loci. For each gene, it reports the total number of individuals with available sequence data
1143 1029 (both as absolute count and percentage out of 54), as well as the number and percentage of
1144 1030 individuals for which data are missing. The reference list sheet contains full bibliographic
1145 1031 citations corresponding to the numeric codes used in the "reference" column of the sequences
1146 1032 sheet.

1147 1033 **Supplementary Table S1.** Pairwise post-hoc tests of size differences between *Apodemus* OTUs
1148 1034 for mandible (Ma), cranium (Cr), and upper molars (Mo). R square (R^2) and corresponding P
1149 1035 values are given above and below the diagonal, respectively. Marked differences are significant
1150 1036 ($P < 0.001$ after Bonferroni correction).

1151 1037 **Supplementary Table S2.** Pairwise post-hoc tests of shape differences between *Apodemus*
1152 1038 OTUs for mandible (Ma), cranium (Cr), and upper molars (Mo). R square (R^2) and
1153 1039 corresponding P values are given above and below the diagonal, respectively. Marked
1154 1040 differences are significant ($P < 0.001$ after Bonferroni correction).

1155 1041 **Supplementary Figure S1.** Phylogenetic relationships among 333 cytochrome *b* sequences of
1156 1042 *Apodemus flavigollis* sensu lato, *A. ponticus*, *A. witherbyi* (reported as *A. fulvipectus*), and *A.*
1157 1043 *sylvaticus* were reconstructed using a maximum likelihood approach implemented in IQ-TREE.
1158 1044 Each sequence name follows the pattern: reported-species-name_location_accession-number. For
1159 1045 example, af_Israel-Mt.Carmel_AJ605690 indicates: af, the GenBank-reported species (af =
1160 1046 *Apodemus flavigollis*), followed by the sampling locality (Israel–Mt. Carmel), and the GenBank

1162 1047 accession number (AJ605690). Two divergent clades within *Apodemus flavigollis* sensu lato are
1163 1048 highlighted based on their geographic distribution of sequences. *A. ponticus* corresponds to the
1164 1049 Anatolian and Levantine samples of *A. flavigollis*. Red arrows mark sequences sampled from
1165 1050 regions geographically proximate to our morphological dataset.

1166 1051 **Supplementary Figure S2.** Phylogenetic relationships among 132 cytochrome *b* sequences of
1167 1052 *Apodemus uralensis* and *A. sylvaticus* were reconstructed using a maximum likelihood approach
1168 1053 implemented in IQ-TREE. Each sequence name follows the pattern: reported-species-
1169 1054 name_location_accession-number. For example, au_Czech.Republic-Moravia_AJ311154
1170 1055 indicates: au, the GenBank-reported species (au = *Apodemus uralensis*), followed by the
1171 1056 sampling locality (Czech Republic–Moravia), and the GenBank accession number (AJ311154).
1172 1057 No clear phylogeographic structure was observed within *A. uralensis*. Red arrows mark
1173 1058 sequences sampled from regions geographically proximate to our morphological dataset.

1174 1059 **Supplementary Figure S3.** Plot of mean values of centroid size, standard deviations, and
1175 1060 standard errors for the analysed *Apodemus* OTUs for mandible (A), cranium (B), and upper
1176 1061 molars (C).

1177 1062 **Supplementary Figure S4.** Phylo-PCA plot of mean shapes for the analysed *Apodemus* OTUs
1178 1063 for mandible (A), cranium (B), and upper molars (C).

1179 1064

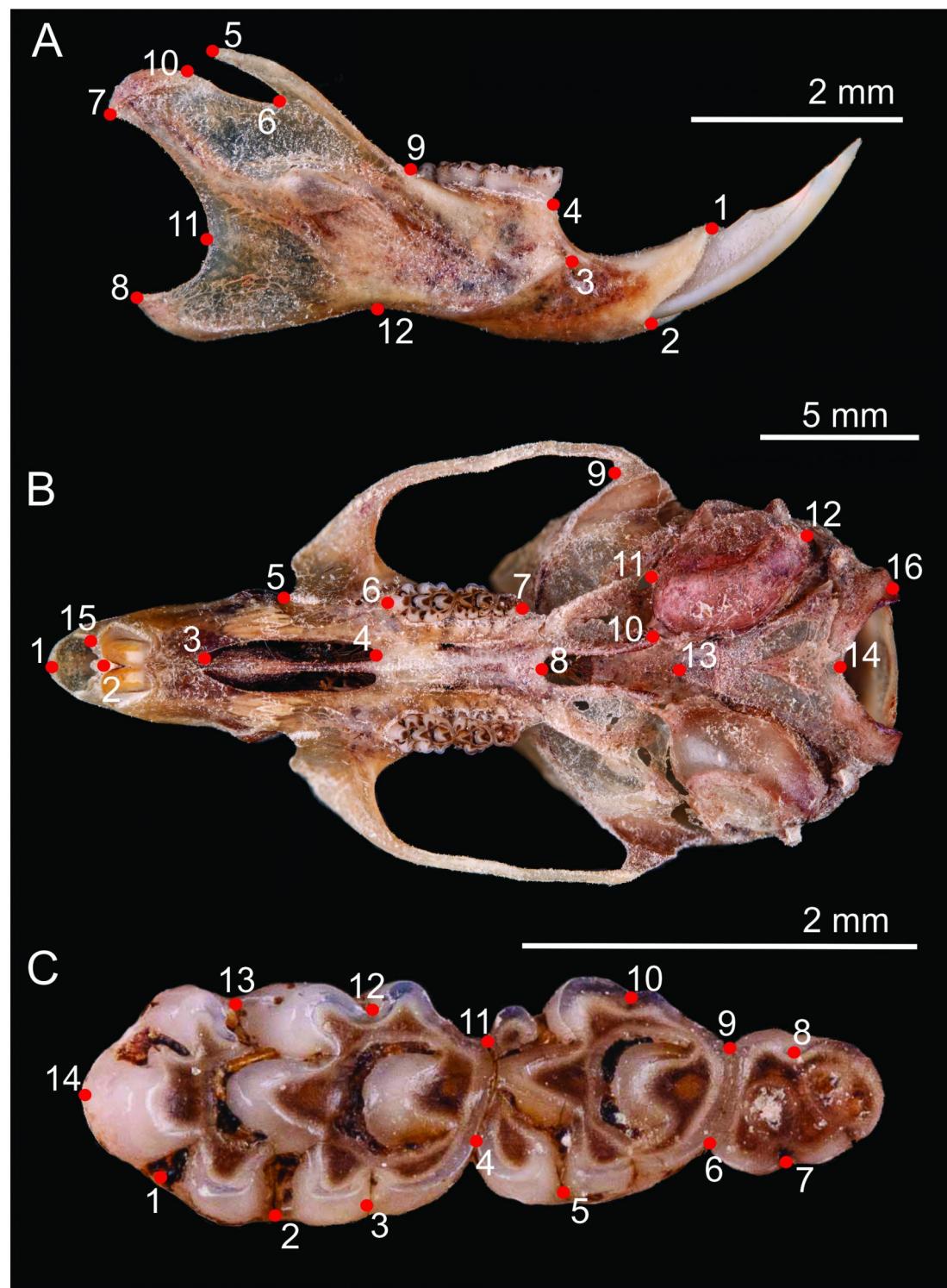


Figure 1. Landmarks collected on images of the mandible in labial view (A), cranium in ventral view (B), and upper molars in occlusal view (C).

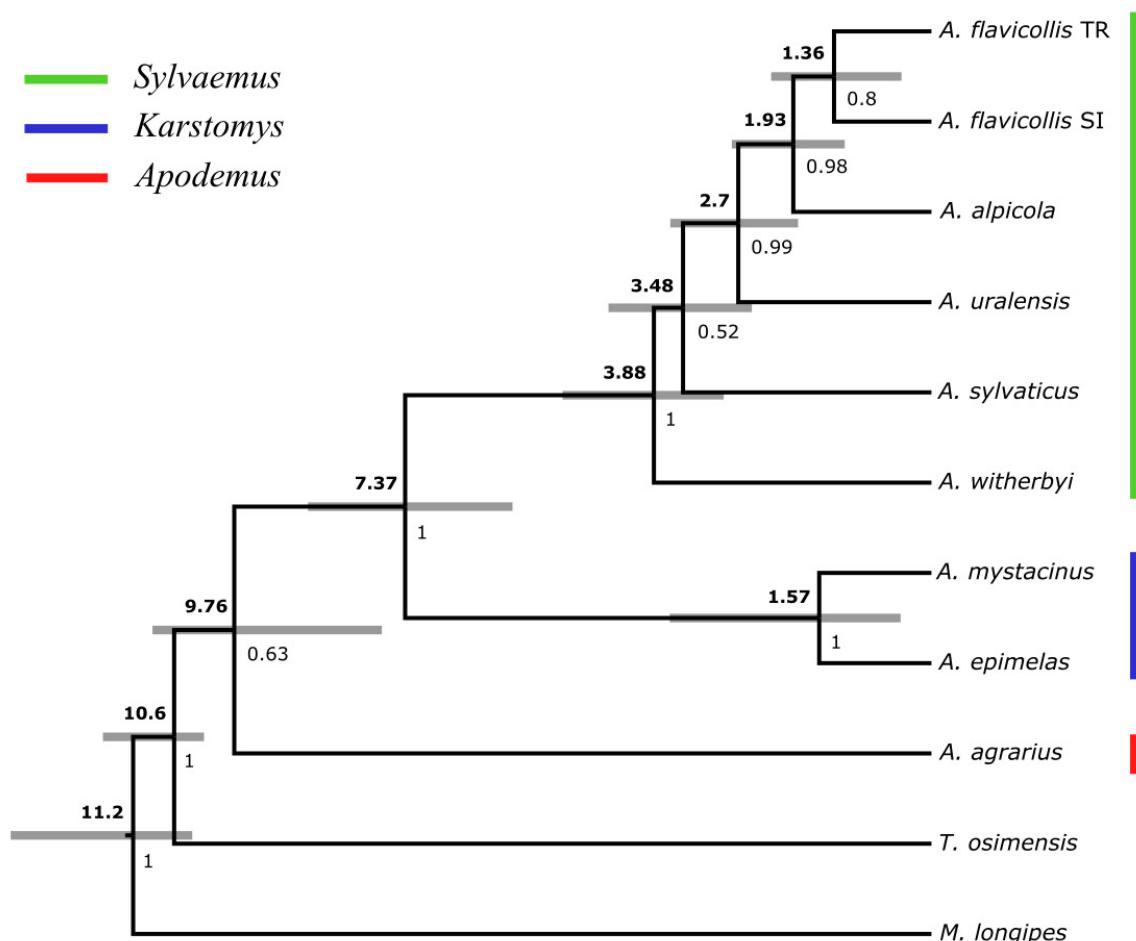


Figure 2. The maximum clade credibility phylogenetic relationship of a tribus Apodemini from the Western Palearctic inferred by Bayesian multispecies multilocus coalescent analyses in BEAST 2. Apodemini MRCA calibration point of about 10.7 Myr was used after Kimura et al. (2017). Node bars indicate the 95% credible interval of the posterior density of divergence times which is expressed in millions of years (Myr) ago since presence. The posterior median of divergence times are in bold, depicted on the left-hand side of each node, while posterior support for node splits are on the right-hand side of each node. Apodemus subgenera are colored as: *Sylvaemus* (green), *Karstomys* (blue) and *Apodemus* (red).

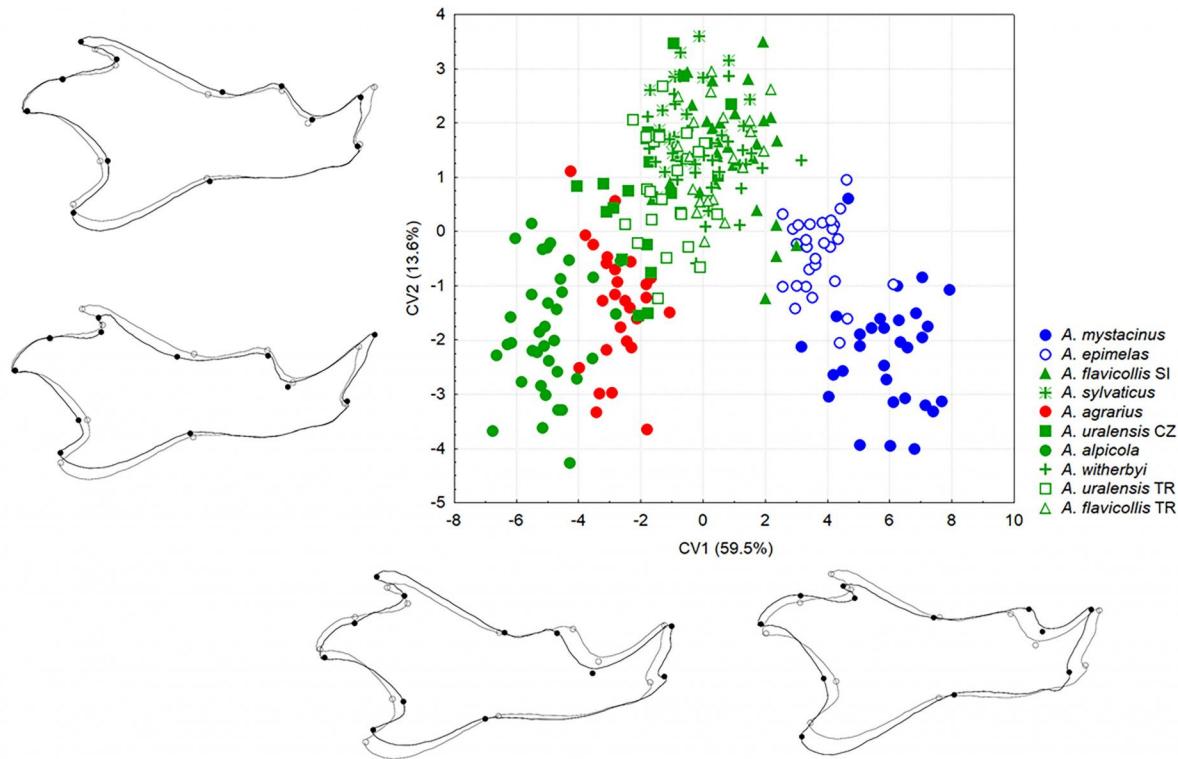


Figure 3. CVA scatterplots of the first and second CV axes for the mandible. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

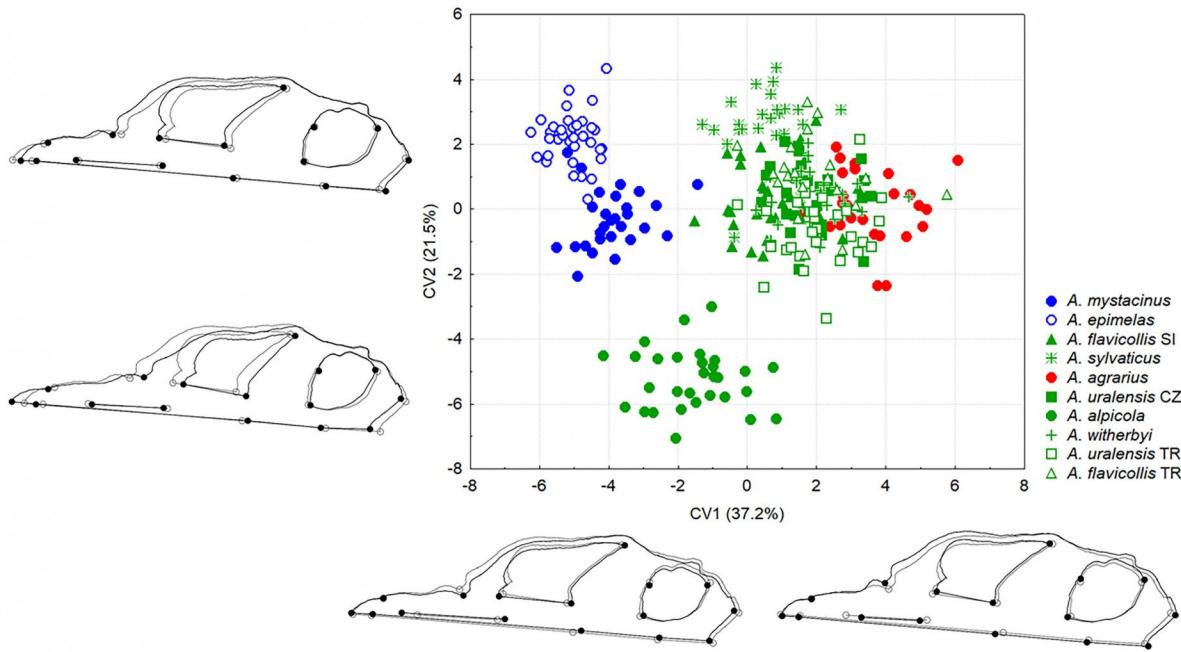


Figure 4. CVA scatterplots of the first and second CV axes for the cranium. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

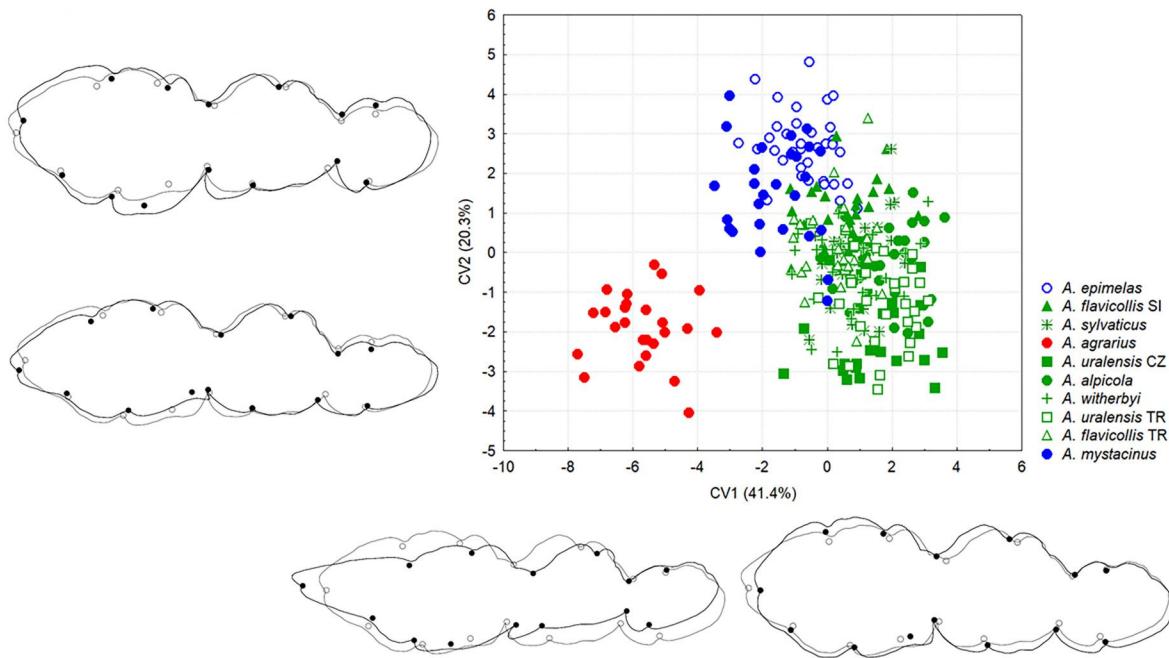

Figure 5[Download TIF \(1.61 MB\)](#)

Figure 5. CVA scatterplots of the first and second CV axes for upper molars. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

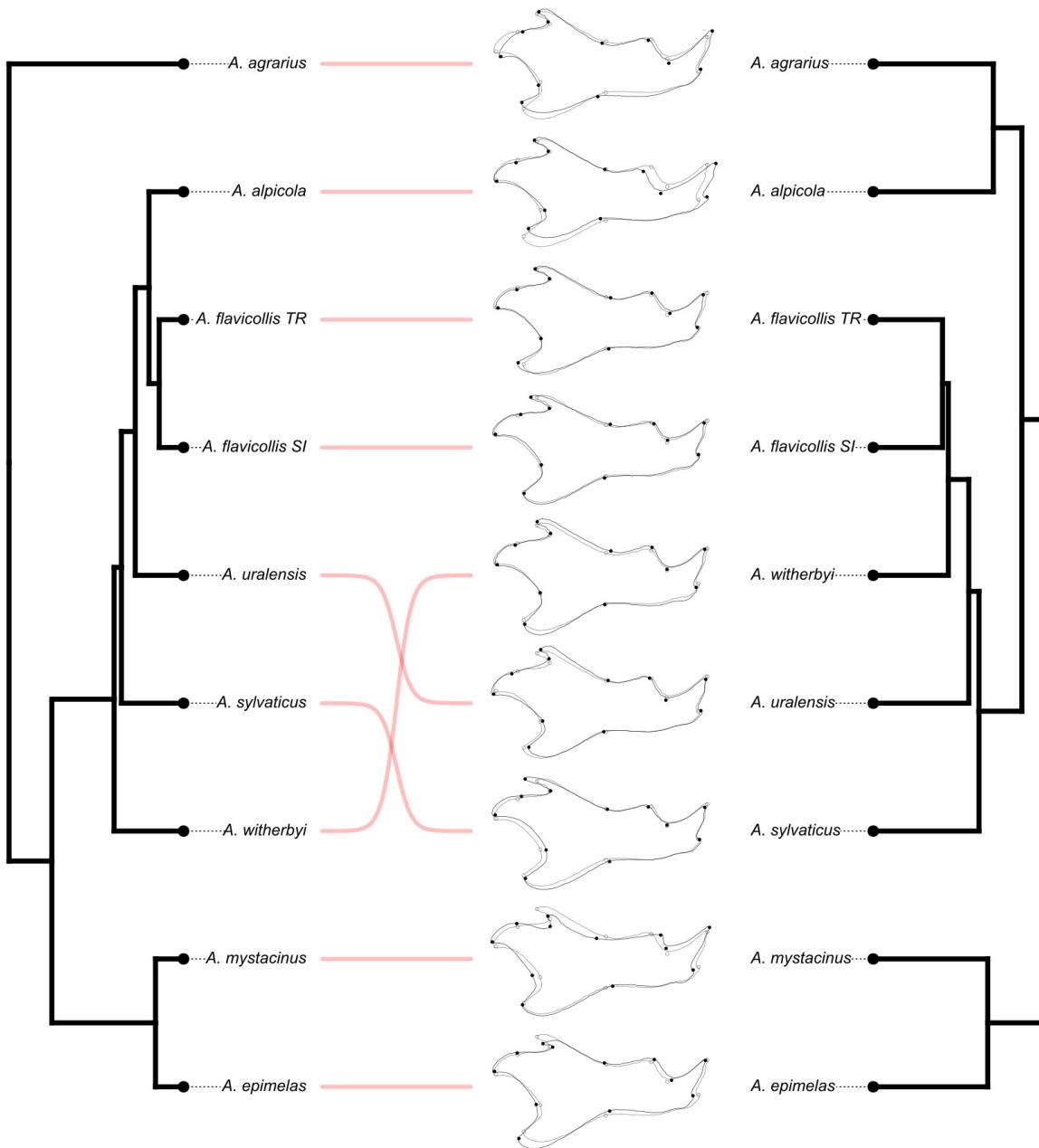


Figure 6. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU mandibular shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean mandibular shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

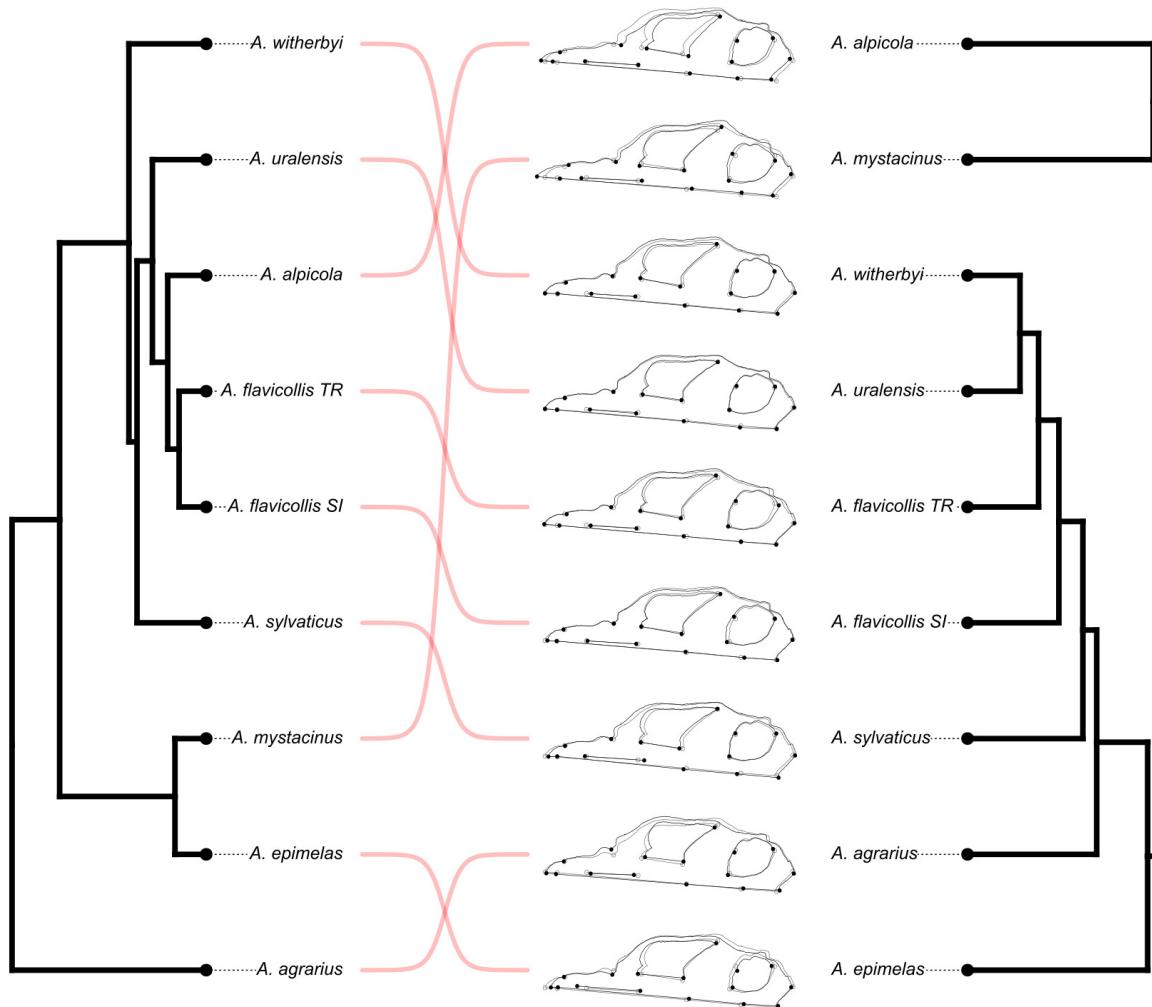


Figure 7. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU cranial shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean cranial shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

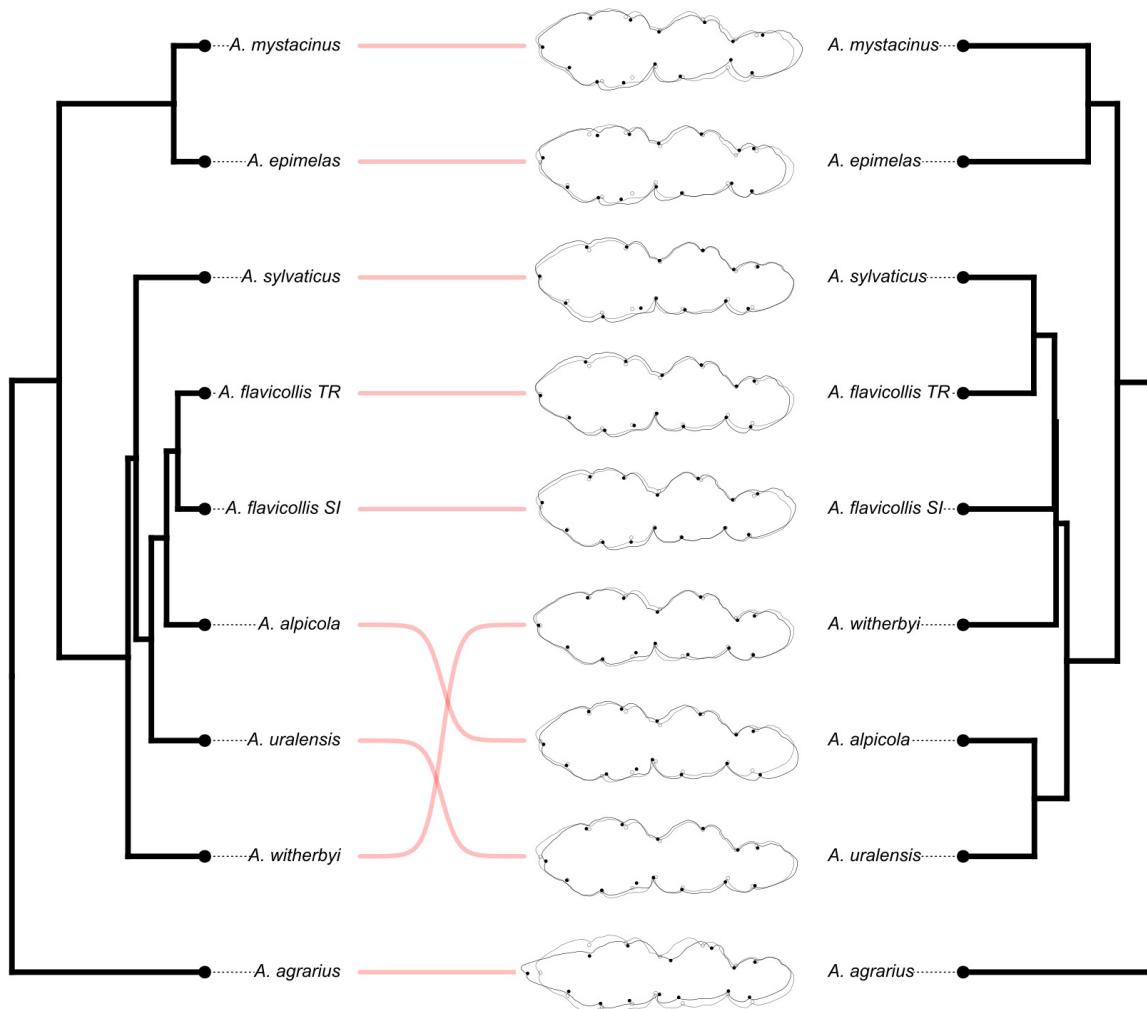


Figure 8. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU molar shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean molar shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

Manuscript body[Download source file \(110.65 kB\)](#)**Figures**[Figure 1 - Download source file \(6.9 MB\)](#)

Figure 1. Landmarks collected on images of the mandible in labial view (A), cranium in ventral view (B), and upper molars in occlusal view (C).

[Figure 2 - Download source file \(78.84 kB\)](#)

Figure 2. The maximum clade credibility phylogenetic relationship of a tribus Apodemini from the Western Palearctic inferred by Bayesian multispecies multilocus coalescent analyses in BEAST 2. Apodemini MRCA calibration point of about 10.7 Myr was used after Kimura et al. (2017). Node bars indicate the 95% credible interval of the posterior density of divergence times which is expressed in millions of years (Myr) ago since presence. The posterior median of divergence times are in bold, depicted on the left-hand side of each node, while posterior support for node splits are on the right-hand side of each node. Apodemus subgenera are colored as: *Sylvaemus* (green), *Karstomys* (blue) and *Apodemus* (red).

[Figure 3 - Download source file \(1.49 MB\)](#)

Figure 3. CVA scatterplots of the first and second CV axes for the mandible. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

[Figure 4 - Download source file \(1.71 MB\)](#)

Figure 4. CVA scatterplots of the first and second CV axes for the cranium. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

[Figure 5 - Download source file \(1.61 MB\)](#)

Figure 5. CVA scatterplots of the first and second CV axes for upper molars. Shape changes along CV axes are visualized by warped outline drawings that are magnified two times.

[Figure 6 - Download source file \(258.6 kB\)](#)

Figure 6. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU mandibular shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean mandibular shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

[Figure 7 - Download source file \(289.46 kB\)](#)

Figure 7. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU cranial shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean cranial shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

[Figure 8 - Download source file \(251.65 kB\)](#)

Figure 8. Co-phylogenetic comparison between the MSC phylogeny (left) and the UPGMA phenogram based on Procrustes distances among mean OTU molar shapes (right). Horizontal red lines connect corresponding taxa across the two trees. Mean molar shapes for each *Apodemus* OTU, scaled twofold relative to the grand mean, are shown alongside the UPGMA phenogram.

Supplementary Online Material[File 1 - Download source file \(33.44 kB\)](#)

Supplementary material S1. Excel file provides a list of mitochondrial cytochrome b sequences obtained from GenBank and used in this study to reconstruct the maximum likelihood phylogenies of *Apodemus flavicollis* (Sheet 1) and *Apodemus uralensis* (Sheet

2). In both sheets, the "accession" column lists the GenBank accession numbers used to retrieve each sequence. The "organism" column indicates the species name as recorded in GenBank. The "geo_loc" column specifies the geographic origin of the sample, while "seq_len" gives the length of the sequence in base pairs. In the *flavicollis* sheet, the "genetic_lineage" column assigns each sequence to a genetic lineage (e.g., European or Middle Eastern) based on its phylogenetic placement in this study. The "reference" column provides the citation for the original study that published the sequence, where available. The *uralensis* sheet contains the same structure, but lacks the "genetic_lineage" column, reflecting the lack of geographic structuring in the genetic data for this species.

File 2 - [Download source file \(22.15 kB\)](#)

Supplementary material S2. Excel file provides detailed information on sequences used in the multispecies multilocus coalescent analysis (MSC) in this study. File is organized into three sheets: sequences, sample structure by gene, and reference list. The sequences sheet contains metadata for all specimens analyzed. The "Taxon" column lists the species identification of each sample, while the "os" column indicates whether the species is represented in our morphometric dataset (yes/no). The column "used_in_phylogenetic_analysis" specifies whether the sample was included in the final MSC phylogenetic reconstruction. The following columns "cyt b", "IRBP", "RAG1", "I7", "vWF", "12S rRNA", "D-loop", and "COI" contain GenBank accession numbers for each gene, or "-" if the sequence is missing. The column "missing (%)" shows the percentage of missing loci per specimen. "Specimen" and "isolate" refer to individual sample identifiers, while "origin" provides information on the geographic origin of the sample. The "reference" column lists numeric codes corresponding to the source of each sequence, as detailed in the reference list sheet. Additional sample-specific information is provided in the "comment" column. The sample structure by gene sheet summarizes the completeness of genetic data across all loci. For each gene, it reports the total number of individuals with available sequence data (both as absolute count and percentage out of 54), as well as the number and percentage of individuals for which data are missing. The reference list sheet contains full bibliographic citations corresponding to the numeric codes used in the "reference" column of the sequences sheet.

File 3 - [Download source file \(19.33 kB\)](#)

Supplementary Table S1. Pairwise post-hoc tests of size differences between *Apodemus* OTUs for mandible (Ma), cranium (Cr), and upper molars (Mo). R square (Rsq) and corresponding P values are given above and below the diagonal, respectively. Marked differences are significant (P<0.001 after Bonferroni correction).

File 4 - [Download source file \(19.22 kB\)](#)

Supplementary Table S2. Pairwise post-hoc tests of shape differences between *Apodemus* OTUs for mandible (Ma), cranium (Cr), and upper molars (Mo). R square (Rsq) and corresponding P values are given above and below the diagonal, respectively. Marked differences are significant (P<0.001 after Bonferroni correction).

File 5 - [Download source file \(5.66 MB\)](#)

Supplementary Figure S1. Phylogenetic relationships among 333 cytochrome b sequences of *Apodemus flavicollis* sensu lato, *A. ponticus*, *A. witherbyi* (reported as *A. fulvipectus*), and *A. sylvaticus* were reconstructed using a maximum likelihood approach implemented in IQ-TREE. Each sequence name follows the pattern: reported-species-name_location_accession-number. For example, af_Israel-Mt.Carmel_AJ605690 indicates: af, the GenBank-reported species (af = *Apodemus flavicollis*), followed by the sampling locality (Israel–Mt. Carmel), and the GenBank accession number (AJ605690). Two divergent clades within *Apodemus flavicollis* sensu lato are highlighted based on their geographic distribution of sequences. *A. ponticus* corresponds to the Anatolian and Levantine samples of *A. flavicollis*. Red arrows mark sequences sampled from regions geographically proximate to our morphological dataset.

File 6 - [Download source file \(3.26 MB\)](#)

Supplementary Figure S2. Phylogenetic relationships among 132 cytochrome b sequences of *Apodemus uralensis* and *A. sylvaticus* were reconstructed using a maximum likelihood approach implemented in IQ-TREE. Each sequence name follows the pattern: reported-species-name_location_accession-number. For example, au_Czech.Republic-Moravia_AJ311154 indicates: au, the GenBank-reported species (au = *Apodemus uralensis*), followed by the sampling locality (Czech Republic–Moravia), and the GenBank accession number (AJ311154). No clear phylogeographic structure was observed within *A. uralensis*. Red arrows mark sequences sampled from regions geographically proximate to our morphological dataset.

File 7 - [Download source file \(123.32 kB\)](#)

Supplementary Figure S3. Plot of mean values of centroid size, standard deviations, and standard errors for the analysed *Apodemus* OTUs for mandible (A), cranium (B), and upper molars (C).

File 8 - [Download source file \(835.46 kB\)](#)

Supplementary Figure S4. Phylo-PCA plot of mean shapes for the analysed *Apodemus* OTUs for mandible (A), cranium (B), and upper molars (C).