Muddy business: seasonal use of wallows by wild boar recorded by camera traps

Damir Ugarković¹, Mihael Janječić², Nikolina Kelava Ugarković³, Stiven Arih², Nikica Šprem²

¹Department of Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10 000 Zagreb, Croatia

²Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia

³Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

Damir Ugarković - 0 0000-0002-5192-9974 Mihael Janječić - 0 0000-0001-8295-952X

Nikolina Kelava Ugarković - 0 0000-0002-9520-8933

Stiven Arih - 0009-0005-6946-0392 Nikica Šprem - 0000-0002-3475-6653

Abstract:

Mud wallowing is an important comfort behaviour for wild boar (Sus scrofa), having several functions. Yet, the temporal changes of when wild boar visit mud wallows and how they use these areas has been rarely studied. To investigate seasonal and daily activity patterns and behaviour of wild boar at mud wallows, passive monitoring involved camera traps set up at ten natural wallows and eight rubbing trees in central Croatia over the course of a year, and the findings were compared with 40 random locations. The most animals were recorded at the wallows in spring and the fewest in winter. The relative abundance index at the wallows was highest in spring but showed no significant seasonal difference. Wild boar significantly preferred coniferous to deciduous trees for rubbing. Behavioural analysis revealed that rooting was most frequent at the wallows in spring, wallowing behaviour dominated in summer and autumn, and locomotion was predominant in winter. Activity patterns showed predominantly nocturnal activity at all sites, with a peak of activity around sunset, except for the wallow during summer when activity was mostly diurnal but peaking around sunset. Overall, there was a high overlap in activity patterns between the wallows and random sites, with the lowest overlap in summer due to increased diurnal use of wallows. A similar overlap was observed in autumn and winter. These findings highlight the multifunctional role of wallows and rubbing trees in wild boar behaviour, suggesting that targeted monitoring can serve as an effective tool for ecological research and population management, including applications in disease surveillance and control.

Keywords: activity pattern, Sus scrofa, wallowing, comfort behaviour, relative abundance index, tree-rubbing.

Received: 2025-04-28 Revised: 2025-10-13 Accepted: 2025-11-28 Final review: 2025-09-19

Short title

Wild boar seasonal use of wallows recorded by camera traps

Corresponding author

Mihael Janječić

Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; email: mjanjecic@agr.hr

Muddy business: seasonal use of wallows by wild boar recorded by camera traps

Abstract

1

2

5

6

9

10

12

13

15

17

18

19

20

21

22

23

Mud wallowing is an important comfort behaviour for wild boar (Sus scrofa), having several functions. Yet, the temporal changes of when wild boar visit mud wallows and how they use these areas has been rarely studied. To investigate seasonal and daily activity patterns and behaviour of wild boar at mud wallows, passive monitoring involved camera traps set up at ten natural wallows and eight rubbing trees in central Croatia over the course of a year, and the findings were compared with 40 random locations. The most animals were recorded at the wallows in spring and the fewest in winter. The relative abundance index at the wallows was highest in spring but showed no significant seasonal difference. Wild boar significantly preferred coniferous to deciduous trees for rubbing. Behavioural analysis revealed that rooting was most frequent at the wallows in spring, wallowing behaviour dominated in summer and autumn, and locomotion was predominant in winter. Activity patterns showed predominantly nocturnal activity at all sites, with a peak of activity around sunset, except for the wallow during summer when activity was mostly diurnal but peaking around sunset. Overall, there was a high overlap in activity patterns between the wallows and random sites, with the lowest overlap in summer due to increased diurnal use of wallows. A similar overlap was observed in autumn and winter. These findings highlight the multifunctional role of wallows and rubbing trees in wild boar behaviour, suggesting that targeted monitoring can serve as an effective tool for ecological research and population management, including applications in disease surveillance and control.

Keywords: activity pattern, comfort behaviour, relative abundance index, *Sus scrofa*, tree-rubbing, wallowing

Introduction

25

26

27

28

30

31

32

33

35

36

38

39

40

41

43

45

46

48

49

50

51

52

53

54

55

56

57

Wild boar (Sus scrofa) is described as intelligent and secretive animal that exhibits a variety of behavioural patterns (Morelle et al. 2015). The most common behaviours of wild boar include foraging activities (such as rooting and feeding) accompanied by locomotion (Erdtmann and Keuling 2020). Comfort behaviours, such as wallowing, are generally less practised but are considered crucial for wild boar well-being (Keuling and Stier 2009; Bracke 2011). Wallowing is defined as the covering of the body surface with mud or a mud-like substance and it serves several functions, including the removal of ectoparasites by immersion in mud and subsequent rubbing, thermoregulation, sexual function, scent marking, and wound disinfection (Krže 1988; Fernández-Llario 2005; Bracke 2011; Gray et al. 2019; Ruf et al. 2023). Tree-rubbing is another behaviour closely related to wallowing, and it shares a common function for removing dried mud, hair, and ectoparasites, and for intraspecific communication by leaving scent marks (Bracke 2011; Ichen et al. 2024). The link between these two comfort behaviours is also evident from the presence of rub/scrub trees in close proximity to wallows (Mayer 2009). However, little is known about the factors influencing the selection of trees for rubbing by wild boar (Lee and Lee 2014), they most often use conifers, as the combination of coniferous resin and mud may create a protective layer on the body in case of injury (Krže 1988).

Wallows are small oval or elongated depressions in moist soil (mud pits) or in small streams with a shallow water level (Belden and Pelton 1976; Massei and Bowyer 1999; Mayer 2009). They are primarily created by animals rooting, rolling, scratching and displacing the soil, creating an impermeable layer of soil that retains water over a longer period of time. Wild boar typically use the same wallow throughout the year, and even twice daily in the warmer months (Campbell and Long 2009; Bracke 2011). The use of frozen wallows has also been observed, as wild boar break up the ice (Stegeman 1938). The importance of the wallows is further seen by the fact that wild boar often leave the area when they dry out (Hörning et al. 1999). Wallows are used by different age and sex groups of wild boar, but mostly by adult males during the mating season (Fernández-Llario 2005). The frequent use by large numbers of wild boar may represents a potential reservoir for pathogens in both wallows and the surrounding streams (Belden and Pelton 1976). This is particularly important in outbreaks of African swine fever, where it has been reported that the virus causing this disease can sustain virulence in water and soil for an extended period of time, making wallows a potential site for the spread of infection (Varzandi et al. 2024).

60

61

62

63

64

65

66

67

69

70

72

73

74

75

77

78

79

80

81

82

83

85

86

87

88

89

90

91

93

The most common wild boar ectoparasites, especially in warm climates, are ticks and lice, and wallowing helps to form a protective layer of mud against them (Fernández-Llario 2005). Wild boar populations can be quite heavily infested with ectoparasites, such as in Spain where 57% of individuals were reported to be affected, and the combination of wallowing and rubbing can successfully remove a considerable number of these ectoparasites (Castillo-Contreras et al. 2022). In addition, wallowing serves to cool the body and prevent hyperthermia, especially in larger individuals (Ruf et al. 2023). Heat exchange is minimised by the limited thermoregulatory function of wild boar sweat glands in response to elevated ambient temperatures (Ingram 1967), the presence of subcutaneous adipose tissue that provides high thermal insulation (Zervanos and Hadley 1973), and the barrel-shaped body morphology that reduces the surface area to body mass ratio, thereby reducing conductive and radiative heat transfer (Bracke 2011). Several studies have also pointed to the sexual function of wallowing, both in males (Fernández-Llario 2005) and females (Sambraus 1981), although it is most pronounced in males at the peak of the rut (Bracke 2011). It has been also reported that wallowing is more frequent in domestic pigs and warthogs (*Phacochoerus africanus*) during the mating season and that males of these species have skin glands responsible for the production of pheromones that are important for mating (Estes et al. 1982). Following this idea, Fernández-Llario (2005) conducted a short-term study from October to February and concluded that the highest frequency of wallowing in wild boar coincided with the mating season, suggesting a sexual function of wallowing. However, his conclusion should be interpreted with caution as it did not cover the whole year and was based only on the visual inspection of animals after culling. The function of scent marking by urinating and lathering saliva on the substrate and nearby vegetation for territory marking and inter-species communication is also confirmed, especially during the peak of the rut (Bracke 2011). Some authors have also suggested the possibility that wallowing could be related to wound disinfection of injuries caused by canines during mating season fights in boars (Sambraus 1981). Though some authors have stated that wallowing can help to cover wounds and accelerate healing due to the bactericidal properties of mud (e.g., Fernández-Llario 2005), this theory has not yet been confirmed.

Knowing and understanding the seasonal activity of wild boar at wallows is of great importance for management and epidemiological control (Mayer 2009; Varzandi et al. 2024). The aim of this study was to: *i*) analyse the relative abundance index (RAI) of wild boar at wallows and rubbing trees in different seasons, and compare them to the RAI obtained from random locations; *ii*) analyse behaviour patterns of wild boar at wallows in different seasons; *iii*) compare activity levels at wallows in different seasons. Finally, comparing activity levels

and behavioural patterns of wild boar at the wallows with activity levels and patterns at random locations in the same study area will ultimately give better insight into the importance of wallowing for the biology of this species.

Material and methods

Study area

The study was conducted in Sisak-Moslavina County in central Croatia, south of the town of Glina. The study area extends in a north-south direction over an area of about 7800 ha (between 45°08' and 45°17' N and 16°01' and 16°09' E), including the far western slopes and parts of Mt. Zrinska Gora. To the southwest, the study area borders directly Bosnia and Herzegovina. The study area is located in the belt of acidophilic beech forests (*Fagus sylvatica*) at higher elevations, while lower parts are dominated by a belt of climate zonal forests of common hornbeam (*Carpinus betulus*). The Köppen classification of this area is a "Cfwbx" climate, meaning warm and rainy with frost and snow in the winter (Zaninović et al. 2008). The average annual air temperature in the study area was 10.7°C, with a seasonal breakdown is 15.2°C in spring, 18.3°C in summer, 6.1°C in autumn and 2.7°C in winter. The annual rainfall is around 1079 mm. The study area is interspersed with numerous creeks (13 permanent headwaters) that provide a steady supply of water for wildlife year round.

The study area is habitat for many large and small mammal species, and wild boar is the most abundant. Wild boar population density estimated using camera traps and the random encounter model was 15.3 ± 2.19 individuals/km², or about 1200 individuals in the area (ENETWILD 2024). The next most common species are roe deer (*Capreolus capreolus*), red deer (*Cervus elaphus*), and fallow deer (*Dama dama*). Other large mammal species present though in lower numbers are grey wolf (*Canis lupus*), while the brown bear (*Ursus arctos*) is present only sporadically. Mesocarnivores, such as golden jackal (*Canis aureus*), red fox (*Vulpes vulpes*), and wildcat (*Felis silvestris*) are also present in the area. Wild boar are hunted individually all year round, with the exception of heavily pregnant and lactating females. Driven hunts with dogs are performed between November and February.

Data collection

Wallows were considered hollows in the ground containing mud and sometimes water year round. Ten wallows were selected, and measurements were taken with construction tape measure to the nearest centimetre; while length, width, depth and altitude were measured in metres using a GPS device (Garmin Montana 700i). Observations were performed with ten

camera traps installed at the selected wallows, and eight camera traps installed at active rubbing trees near the wallows between 17 March 2023 and 25 March 2024. Once first year results were obtained, the survey at the wallows was repeated during summer (21 June to 23 September 2024) to obtain activity level and activity pattern during summer 2024. For rubbing trees, both coniferous trees [spruce (*Picea abies*) and black pine (*Pinus nigra*)] and deciduous trees [apple tree (*Malus domestica*), alder (*Alnus glutinosa*), beech (*Fagus sylvatica*), and hornbeam (*Carpinus betulus*)] were selected (Table S1).

Camera traps were positioned on trees about 50 cm above the ground, facing the wallows or rubbing trees. They were active 24 h a day in burst mode (three photos) without a delay between bursts. Additionally, 40 camera traps were set up in a systematic random grid to compare differences in detection between wallows and random locations that could be used as a reference point for detecting differences between comfort behaviours and other behaviours. Random locations were determined at the intersection of four cells of a grid created in ArcGIS Pro (ESRI 2024). Each cell was 2 x 2 km. Camera traps at these random locations were active between 15 July 2023 and 25 March 2024 to record wild boar activity levels and patterns obtained from a random study design. They were also active 24 h a day in photo mode without delay and were positioned on trees at a height between 50-100 cm, facing north to avoid exposure to sunlight. Based on the ENETWILD (2023) recommendations, no visual, auditory or olfactory attractants were used to avoid affecting the presence and frequency of recording wild boar. Also, camera traps were not placed near animal and human trails. Randomly positioned camera traps proportionally covered all types of habitats present in the study site. The cameras were inspected, checked, and maintained every three months to replace batteries and memory cards.

At the wallows and rubbing trees, Browning Command Ops Pro camera traps were used with a resolution of 22 megapixels, a sensor range of 21.3 meters and a shooting angle of 55°. In the random design, Dörr Snapshot Mini camera traps were used with a resolution of 16 megapixels, a detection angle of 55° and a shooting angle of 40°. The locations of the cameras in the study area are presented in Figure 1. Both camera trap models were equipped with an infrared flash, enabling night photos with minimal disturbance to animals. This feature allows continuous recording of animals 24 hours a day. Each camera trap recorded data such as date, time, air temperature, moon phase, and location ID. Obstacles blocking the detection area such as branches were removed to ensure clear photos.

Weather conditions and air temperature (°C) were obtained from the Croatian Hydrological and Meteorological Service.

Download DOCX (68.14 kB)

Data analysis

162

163

164

165

166

167

168

169

170

171

172

174

175

176

177

178

179

180

181

182

183

184

185

186

188

189

190

191

192

193

Separate analyses were performed for each camera trap setup (target/random sites) and by season (spring: 21 March-20 June; summer: 21 June-22 September; autumn: 23 September-20 December; winter: 21 December-20 March). Data acquisition from photos taken at the wallows or rubbing trees was performed manually, and each observed group or individual was considered an independent record if there were more than 2 minutes between two consecutive photos. Time interval was chosen based on previous studies and guidelines (Hofmeester et al. 2017; ENETWILD 2024). During the examination of photos for each independent record, data were recorded in a Microsoft Excel spreadsheet (Microsoft Corporation 2018). The collected data included the camera trap ID, animal species, the number of wild boar in the group, date and time, and observed animal behaviour (wallowing, rooting, locomotion, rubbing or other). Each observed behaviour was scored, while in cases where wild boar exhibited multiple behaviour types, all were scored equally. The ethogram of wild boar behaviours in this study is shown in Table 1. Photos from the random camera trap locations were uploaded onto the web app Agouti where photographs were automatically grouped in sequences if there was no delay longer than 2 minutes between two consecutive photos (Casaer et al. 2019). Photos were then tagged with species and number of animals, and the camtrapdp file containing information on species, location and timestamp was generated (Hofmeester et al. 2022).

All data analyses and result visualisations were performed in R software (R Core Team 2023). For both camera trap setups, camera trapping days were calculated by season, and the RAI was calculated as the number of events per 100 camera trap days for each site and season, using the following formula described by O'Brien et al. (2003) and O'Brien (2011):

$$RAI = \left(\frac{\text{Number of independent events}}{\text{Number of trap days}}\right) X 100.$$

Seasonal differences in RAI across wallow, rubbing tree, and random camera trap locations were analysed using a linear mixed-effects model (LMM). RAI values were logtransformed to improve normality and homoscedasticity of residuals. The model included season (spring, summer, autumn, winter), location (wallow, rubbing tree or random), and their interaction (season × location) as fixed effects, and camera trap ID as a random intercept to account for repeated measures at the same camera locations across seasons. The model was fitted using the lmer() function from the lme4 package (Bates et al. 2015). Model assumptions were checked using standard residual plots and the DHARMa package (Hartig 2024), confirming appropriate residual distribution and homogeneity of variances after log-

196

197

198

199

200

201

202

204

205

206

207

208

209

210

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

transformation. Post-hoc pairwise comparisons between seasons and site types were performed using estimated marginal means (emmeans package in RStudio) with Tukey adjustments for multiple comparisons. Differences of using coniferous or broadleaf trees for rubbing events were tested using Wilcoxon rank-sum tests.

Wild boar activity level (proportion of the day the animal is active ranging from 0 to 1, i.e., 0.5 value represents that animal was active for 12 h a day) was estimated from captured photos using the "activity" package (Rowcliffe 2023), fitting the von Mises kernel as the circular normal distribution. To account for the circularity of time, the solar time at which each photo was taken was converted to radians, ranging from 0 to 2π , representing a circular, random variable. Based on the simulation performed by Ridout and Linkie (2009), several smoothing parameters (0.5 to 2) were plotted against the original data points. Based on visual inspection, a smoothing factor value of 1.5 was selected. Standard error was estimated by non-parametric bootstrapping (999 bootstrap iterations). An activity probability distribution was then created from fitted activity models to illustrate the activity pattern. To statistically compare activity levels across seasons and setups, the Wald test was used to evaluate whether the difference between two activity estimates (a₁ and a₂) was significantly different from zero. The test statistic was calculated as $W = (a_1 - a_2)^2 / (SE_1^2 + SE_2^2)$, where SE_1 and SE_2 were the standard errors of the respective estimates. This statistic follows a chi-squared distribution with 1 degree of freedom. To check for differences in activity patterns between wallows and random datasets, the overlap coefficients of temporal activity patterns were estimated according to Ridout and Linkie (2009) with the function "overlapEst" from the package "overlap" (Meredith et al. 2024).

Results

The average size of the wallows in this study was 273 x 201 cm, with a depth of 22 cm, at an average elevation of 319 metres (Table S2). The highest number of animals at wallows was recorded in spring (N=679; 235 independent events) and the lowest in winter (N=369; 188 independent events) (Figure 2). The RAI at the wallows was highest in spring, with camera traps recording an average of 53.76 ± 12.95 events per 100 days. The lowest RAI at the wallows occurred in winter, with cameras recording an average of 33.63 ± 13.72 events per 100 days. The RAI did not differ significantly (p>0.05) across seasons for the wallows data set (Figure 2). At random locations, RAI was highest in summer (52.99 ± 6.67 events per 100 days and lowest during autumn (22.88 ± 3.73). There were no significantly higher during the summer

(p<0.05) in comparison with other seasons. Visual representation of calculated RAI during all seasons and locations is shown in Figure 2. Detailed results of the model are available in Table S3 and S4.

Wallowing was observed significantly (p<0.05) more often in autumn than in spring and winter, and in summer than in spring (Figure 3). Rooting was observed significantly (p<0.05) more frequently in spring than in all other seasons. No significant differences were found for other seasonal comparisons (for all observed behaviours; see Table 1). Behaviour scored as "other" was not used in further analysis due to the small number of such events (less than 1% in each season). Wild boar selected significantly more coniferous trees for rubbing than deciduous trees in all seasons (p<0.05).

The activity level of wild boar did not differ significantly between the wallows and random locations (p>0.05). However, the activity level at wallow locations was significantly lower in spring (p<0.05) than in autumn and winter (Table 2). For both location types (wallow and random), activity was highest in autumn (Table 2).

Overlaps between the seasonal activity patterns of wallows and random locations by season are shown in Figure 4. The seasonal activity patterns showed a high degree of overlap between the wallows and random locations throughout the year. The lowest overlap coefficient was observed in summer (0.79), which can be attributed to increased diurnal activity at the wallows. The highest overlap coefficients were observed in winter (0.93), followed by autumn (0.86), indicating a similar pattern of activity between the wallows and the random locations during these seasons. The overall overlap in activity patterns between wallows and random locations was 0.88.

Regarding the activity pattern, the overall peak of activity at wallows and random locations was shortly after 6 p.m. In spring, the only peak of activity at the wallows was around 9 p.m., with a similar activity level throughout the rest of the day (Fig. S3). In summer, the peak of activity at wallows was around 8 p.m., and activity was lowest around midnight. In autumn, the highest activity was observed around 7 p.m., and the lowest activity around noon for both setups. In winter, two activity peaks were observed, the first around 2 a.m. and the second around 7 p.m., while the lowest activity was observed around midday for both experimental setups (Figure 4).

Discussion

In the present study, RAI and seasonal patterns in wild boar behaviour and activity captured by camera traps at wallows, rubbing trees, and random locations were investigated. There were no

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

differences in RAI at the wallows between seasons, and between locations during study period. RAI at random locations was significantly higher during summer. Wallowing was observed significantly more often during autumn in relation to spring and winter, and significantly more in summer than in spring. Rooting as behaviour was recorded significantly more during spring. Wild boar used significantly more coniferous trees for rubbing than deciduous trees. The activity level at wallows was lower in spring than in autumn and winter, while there were no differences in other comparisons (between seasons and between the wallows and random locations). The overlap coefficient between the wallows and random locations was lowest in summer, when wild boar activity was higher during the day. Different age and sex categories of wild boar used the wallows and rubbing trees (Fig. S6-S9).

Wild boar behaviour is the result of an interaction between intrinsic (energy production, reproduction) and extrinsic factors (habitat, climate, presence of predators) (Naguib 2006; Morelle et al. 2014). Wallowing can be considered comfort behaviour, but can also have other important functions for wild boar (Bracke 2011; Erdtmann and Keuling 2020). Wild boar tend to use wallows throughout the year, regardless of season (Belden and Pelton 1974). This was also supported by present study, when no significant differences in RAI were found between seasons, but high variance was observed between locations and within the same locations between seasons (Figure 2). Spring seemed to be the predominant season in terms of RAI at wallows, closely followed by summer and autumn. Rooting had a significantly higher occurrence during spring than in other seasons, highlighting the foraging usage of wallows during spring. Krčmar (2019) investigated the abundance of different tick species across seasons in Croatia, and found that the highest abundance of all tick species was recorded in spring, suggesting that this increased abundance of ectoparasites in spring could also influence the use of wallows and rubbing trees by wild boar. According to Crouch (1983), wallows are utilised more frequently in the summer months. In summer, wallowing is important for thermoregulation, while in autumn it is part of mating behaviour (Bracke 2011). Because the piglets are born during spring, RAI is expected to rise in spring and decrease gradually throughout the year, especially during winter, due to the intensive culling in the driven hunts. Even though RAI on wallows didn't differ significantly throughout the year, wallowing events were significantly more frequent in autumn and summer than spring, supporting a sexual and thermoregulatory role for wallows. During the mating season, sows and boars tend to leave taint in and around the wallows to mark their territory (Allwin et al. 2016). In the context of climate change, autumn has become warmer as a season, resulting in the wallow being used for thermoregulation over a longer period and overlapping with the mating season (Scandura et al.

299

300

301

302

303

304

305

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

2022; Calinger and Curtis 2023). Since the results of the present study show that wallowing as a behaviour was observed significantly more often during autumn than in spring or winter, and significantly more in summer than in spring, it can be proposed that heat stress, especially in combination with mating season, has an impact on the occurrence of wallowing. Although not statistically significant, the difference between the obtained RAI at wallows and random locations is the highest during autumn, suggesting a possible preference for wallows during this season. Winter is the coldest season and the least favourable for wildlife, resulting in the lowest RAI values at the wallows. During this season, animals are less active to reduce energy loss and maintain optimal body temperature (Speers-Roesch et al. 2018; Guiden and Orrock 2020). Nevertheless, sows in late gestation also exhibit wallowing behaviour in winter (Buckner et al. 1998). Another explanation is that the incidence of ectoparasites is lowest in winter months (Krčmar 2019), which also coincides with the lowest RAI at rubbing trees.

Locomotion as behaviour was more common (although not statistically significant) in winter than in other seasons. In winter, the peak of the mating season is over and wild boar do not need to wallow for thermoregulation. In addition, microbiological activity in the soil is lower in cold weather and the soil may be frozen for certain periods (Pietikäinen et al. 2005). Therefore, it is expected that they will reduce the percentage of wallowing and rooting and increase the percentage of locomotion. Nevertheless, wild boar have been repeatedly observed to use the wallows during winter driven hunts, which can be associated with two behaviours: i) thermoregulatory behaviour (Vestergaard and Bjerg 1996) to cool the body while running from hunting dogs, and ii) anti-predator behaviour (Gosling and McKay 1990) to conceal their scent and deceive the dogs (Šprem N., unpublished data). Therefore, wallowing can still be expected during winter, but not as much as during other seasons. In general, this behaviour was most evenly distributed over the seasons. Foraging behaviour in wild boar generally occurs in relatively small areas, over short distances, and with low locomotion speed (Spitz and Janeau 1990; Morelle et al. 2015). Erdtmann and Keuling (2020) reported that behaviours such as foraging and locomotion are more common than wallowing. They found that rooting as a type of foraging behaviour had the highest frequency at wallows in spring, similar to the present study, as vegetation starts and the biological and microbiological activity of the forest soil is at its highest (Ugarković et al. 2011; Žifčáková et al. 2016). The lower frequency observed in summer can be attributed to high air and soil temperatures and dry soil conditions, which reduce food availability for omnivorous wild boar and hinder rooting behaviour due to increasing dryness (Ugarković et al. 2018; Ruf et al. 2021). In addition to foraging, rooting can also be observed in nest building or thermoregulation by facilitating access to cooler soil layers or

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

helping to create wallows that help dissipate body heat at high ambient temperatures (Baert et al. 2022).

The highest activity level in autumn at wallows can be attributed to the mating season, while the lowest activity level in spring is due to farrowing. This is because sows look for safe places to nest before farrowing, away from disturbances (Saïd et al. 2012). Previously, sows were reported to reduce their activity about one month before farrowing (Morelle et al. 2015; Allwin et al. 2016), which is consistent with the lower activity level found in sows in spring at the wallows. At random locations, activity levels were also highest in autumn (mating season), followed by winter and summer. The increased activity in autumn and winter in the present study can also be attributed to human disturbance, i.e., the peak of the hunting season and frequent driven hunts (Thurfjell et al. 2013; Olejarz et al. 2024). Although research by Šprem et al. (2015) on chamois (Rupicapra rupicapra) confirmed that ungulate activity can be influenced by large carnivores, we believe that in the present study, large carnivores exert a lesser pressure than humans, as a lower number of individuals predated by wolves is expected, similar to the ratio reported by Bassi et al. (2020). Also, due to the scavenging behaviour of wild boar, wolves can provide additional food resources for wild boar with the carcasses of killed animals, thus increasing food availability and reducing activity (Brogi et al. 2025), which is not the case in our study. Therefore, the increase in wild boar activity during autumn and winter is related mostly to the mating season and human disturbance (peak of driven hunting season). The lowest activity level at random locations in summer can be attributed to less human disturbance, higher temperatures, and higher food availability (Johann et al. 2020; Greco et al. 2021).

Since the overlap coefficient between the activity patterns at the wallows and the random locations was lowest in summer and most activity occurred during the day, camera traps were left at the wallows in summer 2024 to verify whether the results of summer 2023 were an exception. The activity patterns recorded at the wallows during the 2023 and 2024 summer seasons overlapped strongly, with the same peak of activity at around 6 p.m., and activity was diurnal (Fig. S9). According to the results of the random locations presented in this study, wild boar were most active at dusk and at night, mainly due to the maintenance of body temperature, i.e., thermoregulation (Allwin et al. 2016). Wild boar usually forages for food in the first half of the active period, while wallowing and other comfort behaviours occur during the other half (Keuling and Stier 2009). In addition, in the present study, it was observed that wallowing activity occurred more frequently during the day and at dusk in summer, which is

consistent with the findings of Mersinger and Silvy (2007) who concluded that the mean distance from free water in feral pigs is greater during night than during the day during summer.

To summarise, wild boar regularly use wallows, making the wallows well suited for camera trap monitoring, and provides an insight into the occurrence and activities of wild boar. Despite the fact that 94 warm days (Tmax > 25.0°C) and 32 hot days (Tmax > 30.0°C) were recorded in the study area during the year, especially in summer, the wild boar occurrence at the wallows was not different during this season. Given that the highest difference was recorded in autumn, we suggest that wallows gain additional significance during the mating season, supporting sexual function alongside their roles in thermoregulation and ectoparasite defence. Finally, camera traps at wallows can be used in combination with other available tools (such as environmental DNA diagnostics) for effective disease management and improved protection of wild boar and human health (Varzandi et al. 2024).

Acknowledgements

The study was partially supported by the Croatian Science Foundation, project HRZZ: IP-2022-10-7502, "Wild boar fear of hunting: effects on space use, stress, and meat quality" and Erasmus+ SHUNTDIEM (Project: 2024-1-CZ01-KA220-HED-000253199.

References

- Allwin B., Gokarn N.S., Vedamanickam S., Gopal S., 2016. The wild pig (*Sus scrofa*) behaviour a retrospective study. J. Dairy Vet. Anim. Res. 3(3):115-125.
- Bassi E., Gazzola A., Bongi P., Scandura M., Apollonio, M., 2020. Relative impact of human harvest and wolf predation on two ungulate species in Central Italy. Ecol. Res. 35(4): 662-674.
- Bates D., Mächler M., Bolker B., Walker S., 2015. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1): 1–48.
- Baert S, Aubé L, Haley DB, Bergeron R, Devillers N., 2022 The protective role of wallowing against heat stress in gestating and lactating sows housed outdoors. Physiol. Behav. 254: 113898.

Belden R.C., Pelton M.R., 1976. Wallows of the European wild hog in the mountains of east

Tennessee. J. Tenn. Acad. Sci. 51(3): 91-93.

- Bracke M.B.M., 2011. Review of wallowing in pigs: Description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132(1): 1-13.
- Brogi R., Bongi P., Del Frate M., Sieni S., Cavallera A., Apollonio M., 2025. Intra-guild competition and ecosystem services of mammal scavengers in a new colonized wolf landscape. Behav. Ecol. Sociobiol. 79(2): 1-14.
- Buckner L.J., Edwards S.A., Bruce J.M., 1998. Behaviour and shelter use by outdoor sows. Appl. Anim. Behav. Sci. 57: 69-80.
- Casaer J., Milotic T., Liefting Y., Desmet P., Jansen, P., 2019. Agouti: A platform for processing and archiving of camera trap images. Biodivers. Inf. Sci. Stand. 3: e46690
- Calinger K., Curtis P., 2023. A century of climate warming results in growing season extension:

 Delayed autumn leaf phenology in north central North America. PLOS ONE 18(3):
 e0282635.
- Campbell T.A., Long D.B., 2009. Feral swine damage and damage management in forested ecosystems. Forest Ecol. Manage. 257: 2319–2326.
- Castillo-Contreras R., Magen L., Birtles R., Varela-Castro L., Hall J. L., Conejero C., Aguilar X. F., Colom-Cadena A., Lavín S., Mentaberre G., López-Olvera J. R. (2022). Ticks on wild boar in the metropolitan area of Barcelona (Spain) are infected with spotted fever group rickettsiae. Transbound. Emerg. Dis. 69: e82–e95.
- Crouch L.C., 1983. Movements of and habitat utilization by feral hogs at the Savannah River Plant, South Carolina. M.Sc. thesis, Clemson University, Clemson, South Carolina.
- ENETWILD-consortium, Guerrasio T., Acevedo P., Apollonio M., Arnon A., Barroqueiro C., Belova O., Berdión O., Blanco-Aguiar J.A., Bijl H., Bleier N., Bučko J., Bužan E., Carniato D., Carro F., Casaer J., Carvalho J., Csányi S., del Rio L.L., del Val Aliaga H., Ertürk A.,

Escribano F., Duniš L., Fernández-Lopez J., Ferroglio E., Fonseca C., Gačić D., Gavashelishvili A., Giannakopoulos A., Gómez-Molina A., Gómez-Peris C., Gruychev G., Gutiérrez I., Häberlein V., Hasan S.M., Hillström L., Hoxha B., Iranzo M., Janječić M., Jansen P., Illanas S., Kashyap B., Keuling O., Laguna E., Lefranc H., Licoppe A., Liefting Y., Martinez-Carrasco C., Mrđenović D., Nezaj M., Pardavilla X., Palencia P., Pereira G., Pereira P., Pinto N., Plhal R., Plis K., Podgórski T., Pokorny B., Preite L., Radonjić M., Rowcliffe M., Ruiz-Rodríguez C., Santos J., Rodríguez O., Scandura M., Sebastián M., Sereno J., Šestovic A., Shyti I., Somoza E., Soriguer J., Solà de la Torre J., Soyumert A., Šprem N., Stoyanov S., Smith G.C., Sulejmani M., Tinoco Torres R., Trägårdh A., Urbaitis G., Urbani N., Uguzashvili T., Vada R., Zanet S., Vicente J., 2023. Wild ungulate density data generated by camera trapping in 37 European areas: first output of the European Observatory of Wildlife (EOW). EFSA Support. Publ. 20(5): 7749E.

ENETWILD-consortium, Guerrasio T., Carniato D., Acevedo P., Apollonio M., Arakelyan M., Arnon A., Beatham S., Belova O., Berde L., Berdión O., Blanco-Aguiar J.A., Bleier N., Burgui Oltra J.M., Bužan E., Carvalho J., Casaer J., Del Frate M., Dijkhuis L., Duniš L., Ertürk A., Dal Mas M., Ferroglio E., Forti A., Gačić D., Gavashelishvili A., Hillström L., Jenječić M., Ježek M., Keuling O., Licoppe A., Liefting Y., Martinez-Carrasco C., Olano I., Palencia P., Plis K., Podgorski T., Pokorny B., Rowcliffe M., Santos J., Smith G.C., Sola de la Torre J., Šprem N., Stoyanov S., Zanet S., Vicente J., Scandura M., 2024. Generating wildlife density data across Europe in the framework of the European Observatory of Wildlife (EOW). EFSA Support. Publ. 21(10): 9084E.

Erdtmann D., Keuling O., 2020. Behavioural patterns of free roaming wild boar in a spatiotemporal context. PeerJ 8: e10409.

Estes R.D., Cumming D.H.M., Hearn G.W., 1982. New Facial Glands in Domestic Pig and Warthog. J. Mammal. 63(4): 618–624.

Esri, 2024. ArcGIS Pro (version 3.3). Environmental Systems Research Institute, Redlands, CA, USA. Available at: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview Fernández-Llario P., 2005. The sexual function of wallowing in male wild boar (*Sus scrofa*). J. Ethol. 23(1): 9-14.

Gray S.M., Roloff G.J., Montgomery R.A., Beasley J.C., Pepin K.M. 2019. Wild pig spatial ecology and behavior. In, Invasive wild pigs in North America: ecology, impacts and management. CRC Press, BocaRaton, FL. pp. 33–56.

Greco I., Fedele E., Salvatori M., Giampaoli Rustichelli M., Mercuri F., Santini G., Rovero F., Lazzaro L., Foggi B., Massolo A., De Pietro F., Zaccaroni M. 2021. Guest or pest? Spatiotemporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. 101: 193–206.

Guiden P.W., Orrock J.L., 2020. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164: 181-192.

Gosling L.M., McKay H.V., 1990. Scent-rubbing and status signalling by male mammals. Chemoecology 1: 92–95.

Hartig F., 2024. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)
Regression Models. R package version 0.4.7, https://github.com/florianhartig/dharma.

Hofmeester T. R., Rowcliffe J. M., Jansen P. A., 2017. A simple method for estimating the effective detection distance of camera traps. Remote Sens. Ecol. Conserv. 3(2): 81-89.

Hofmeester T.R., Rowcliffe M., Wearn O.R., 2022. camtrapdp: Read and validate camera trap data packages (Version 0.1.0). R package. Available at: https://github.com/tdwg/camtrapdp
Hörning B., Raskopf S., Simantke C., Boehnke E., Walter J., Schneider M., 1999. Argemäße
Schweinehaltung. Grundlagen und Beispiele aus der Praxis (Species-suited pig husbandry.
Principles and Examples from Practice). Stiftung Ökologie & Landbau, Bad Dürkheim,

472 15

Germany.

Ichen A., Hanane S., Bouaamama M., Alaoui M., Magri N., Benhoussa A., 2024. Selection of trees for rubbing by the wild boar (*Sus scrofa*) in the Sidi Boughaba forested Moroccan Ramsar site: Assessment, implications, and perspectives. J. For. Sci. 69: 11-20.

- Ingram D.L., 1967. Stimulation of cutaneous glands in the pig. J. Comp. Pathol. 77: 93–98.
- Johann F., Handschuh M., Linderoth P., Dormann C.F., Arnold J., 2020. Adaptation of wild boar (*Sus scrofa*) activity in a human-dominated landscape. BMC Ecol. 20(1): 4.
- Keuling O., Stier N., 2009. Schwarzwild Untersuchungen zu Raum- und Habitatnutzung des Schwarzwildes (*Sus scrofa* L. 1758) in Südwest-Mecklenburg. Technische Universität Dresden, Tharandt.
- Krčmar S., 2019. Diversity, ecology, and seasonality of hard ticks (Acari: Ixodidae) in eastern Croatia. J. Vector Ecol. 44(1): 18-29.
- Krže B., 1988. Divlje svinje, biologija i gazdovanje. Savez lovačkih organizacija Bosne i Hercegovine, Lovački list, Sarajevo, 203 pp. (In Bosnian)
- Lee S.M., Lee W.S., 2014. Selection of the rubbing trees by wild boar (*Sus scrofa*) and its ecological role in a mixed forest, Korea. J. Korean Soc. Forest Sci. 103: 510–518.
- Markov N., Economov A., Hjeljord O., Rolandsen C.M., Bergqvist G., Danilov P., Dolinin V., Kambalin V., Kondratov A., Krasnoshapka N., Kunnasranta M., Mamontov V., Panchenko D., Senchik, A., 2022. The wild boar *Sus scrofa* in northern Eurasia: a review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mam. Rev. 52: 519-537.
- Massei G., Bowyer R.T., 1999. Scent marking in fallow deer: effects of lekking behaviour on rubbing and wallowing. J. Mammal. 80: 633-638.
- Mayer J., 2009. Wild Pig Behavior. In: Mayer J., Brisbin I.L. Jr. (Eds.) Wild Pigs: Biology, Damage, Control Techniques and Management. Savannah River National Laboratory, Aiken, South Carolina. 77-104.

Meredith M., Ridout M.S., Campbell L.A.D. (2024) overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. R package version 0.3.9. https://cran.r-project.org/web/packages/overlap/overlap.pdf

- Mersinger R.C., Silvy N.J., 2007. Range size, habitat use, and dial activity of feral hogs on reclaimed surface-mined lands in east Texas. Hum. Wildl. Interact. 1(2): 161-167.
- Microsoft Corporation, 2018. Microsoft Excel. Microsoft Corporation.
- Morelle K., Lehaire F., Lejeune P., 2014. Is wild boar heading towards movement ecology? A review of trends and gaps. Wildl. Biol. 20(4): 196-205.
- Morelle K., Podgórski T., Prévot C., Keuling O., Lehaire F., Lejeune, P., 2015. A review of wild boar *Sus scrofa* movement ecology. Mamm. Rev. 45: 15–29.
- Naguib M., 2006. Methoden der Verhaltensbiologie. Springer-Verlag, Berlin Heidelberg.
- O'Brien T.G., Kinnaird M.F., Wibisono H.T., 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6: 131–139.
- O'Brien T. 2011. Abundance, density and relative abundance: A conceptual framework. In O'Connell, A.F., Nichols J.D., Karanth U.D. (Eds.), In Camera traps in animal ecology. Methods and analyses (pp. 71–96). New York, NY: Springer.
- Olejarz A., Augustsson E., Kjellander P., Ježek M., Podgórski T., 2024. Experience shapes wild boar spatial response to drive hunts. Sci. Rep. 14: 19930
- Pietikäinen J., Pettersson M., Bååth E., 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52(1): 49-58.
- R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
- Ridout M.S., Linkie M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14: 322-337.

Rowcliffe M., 2023. activity: Animal Activity Statistics. R package version 1.3.4. https://cran.r-524 525 project.org/web/packages/activity/activity.pdf Ruf T., Vetter S. G., Painer J, Stalder G., Bieber, C., 2021. Atypical for northern ungulates, 526 energy metabolism is lowest during summer in female wild boars (Sus scrofa). Sci. 527 Rep. 11(1): 18310. 528 Ruf T., Vetter S.G., Painer-Gigler J., Stadler G., Bieber C., 2023. Thermoregulation in the wild 529 boar (Sus scrofa). J. Comp. Physiol. B 193: 689-697. 530 Saïd S., Tolon V., Brandt S., Baubet E., 2012. Sex effect on habitat selection in response to 531 hunting disturbance: the study of wild boar. Eur. J. Wildl. Res. 58: 107-115. 532 Sambraus H.H., 1981. Das Suhlen von Sauen. Deutsche Tierarztl. Wochenschr 88: 65-67. 533 Scandura M., Podgórski T., Vicente J., Iacolina L., 2022. Wild Boar Sus scrofa Linnaeus, 1758. 534 In: Corlatti L., Zachos F.E. (Eds.) Terrestrial Cetartiodactyla, Handbook of the Mammals of 535 536 Europe. Springer, Cham. Spitz F., Janeau G., 1990. Spatial strategies – an attempt to classify daily movements of wild 537 538 boar. Acta Theriol. 35: 129-149. Speers-Roesch B., Norin T., Driedzic W.R., 2018. The benefit of being still: energy savings 539 during winter dormancy in fish come from inactivity and the cold, not from metabolic rate 540 depression. Proc. R. Soc. B 285: 20181593. 541 Stegeman L.C., 1938. The European wild boar in the Cherokee national forest. Tennessee. J. 542 Mammal. 19: 279-290. 543 Šprem N., Zanella D., Ugarković D., Prebanić I., Gančević P., Corlatti L., 2015. Unimodal 544 activity pattern in forest-dwelling chamois: typical behaviour or interspecific avoidance? 545 Eur. J. Wildl. Res. 61: 789-794. 546 Thurfjell H., Spong G., Ericsson G., 2013. Effects of hunting on wild boar Sus scrofa behaviour. 547

18

Wildl. Biol. 19(1): 87-93.

Ugarković D., Tikvić I., Seletković Z., Oršanić M., Seletković I., Blažinkov M., Mrkonjić Fuka M., Redžepović S., 2011. Neke mikrobiološke značajke tala prirodno pomlađivanje šumskih otvora oštećenih šumskih ekosustava obične jele (*Abies alba* Mill.) u Gorskom kotaru. Šumar. List 3-4: 99-111. (In Croatian with English abstract)

Ugarković D., Tikvić I., Popić K., Malnar J., Stankić I., 2018. Microclimate and natural regeneration of forest gaps as a consequence of silver fir (*Abies alba* Mill.) dieback. Šumar. List 5-6: 235-245.

Varzandi A.R., Zanet S., Seano P.B., Occhibove F., Vada R., Benatti F., Palencia M.P., Ferroglio E., 2024. Detection of African swine fever virus and wild boar eDNA in soil and turbid water samples: towards environmental surveillance. Eur. J. Wildl. Res. 70: 4.

Vestergaard K.S., Bjerg B., 1996. Wallowing behavior in fattening pigs. In: Duncan, I.J.H., Widowski T.M., Haley D.B. (Eds.), Proc. Thirtieth Internation. Cong. Internation. Soc. Appl. Ethol. The Colonel K.L. Cambell Centre for the Study of Animal Welfare, Ontario, Canada, p. p66.

Zaninović K., Gajić-Čapka M., Perčec Tadić M., Vučetić M., Milković J., Bajić A., Cindrić K., Cvitan L., Katušin Z., Kaučić D., Likso T., Lončar E., Lončar Ž., Mihajlović D., Pandžić K., Patarčić M., Srnec L., Vučetić V., 2008. Klimatski atlas Hrvatske / Climate Atlas of Croatia 1961-1990. (In Croatian with English abstract)

Zervanos S.M., Hadley N.F., 1973. Adaptational biology and energy relationships of the Collared Peccary (*Tayassu tajacu*). Ecology 54: 759–774.

Žifčáková L., Větrovský T., Howe A., Baldrian P., 2016. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18(1): 288-301.

Table 1- Ethogram of wild boar behaviour in this study.

Behaviour	Description
Wallowing	The wild boar enters a wallow and engages in body contact with the mud
	or water, typically by lying down or rolling in it to coat the body.
Locomotion	The wild boar moves through the camera frame without or with short
	pauses, without interaction with the wallow. The behaviour was classified
	as locomotion regardless of wild boar speed in the sequence.
Rooting	The wild boar uses its snout to dig up the soil. Rooting is characterised by
	repeated head movements and displacement of ground material.
Tree rubbing	Behaviour in which a wild boar rubs its body against the trunk of a tree. It
	was usually performed with vigorous, repeated body movements that left
	visible marks on the tree.
Other	Other types of behaviour exhibited by the wild boar such as lying down
	or interacting with other individuals

Table 2- Activity level, number of animals and trapping effort of wild boar (*Sus scrofa*) during different seasons at wallows and random locations in central Croatia.

Variables	Season				
	Spring	Summer	Autumn	Winter	
AL-wallows	0.38 ± 0.04^{a}	0.47 ± 0.04^{ab}	0.53 ± 0.04^{b}	0.51 ± 0.03^{b}	
AL-random	_	0.41 ± 0.02	0.50 ± 0.02	0.47 ± 0.02	
Animals ¹ (N)	679	396	631	369	
Independent events at wallows	235	193	255	188	
Trapping effort at wallows	487	464	574	627	

AL – activity level; ¹total number of observed animals at wallows; ^{a.b} values marked with different letters differ significantly (p<0.05)

Manuscript body

Download DOCX (68.14 kB)

re captions:
1

604

605

606

607

608

609

610

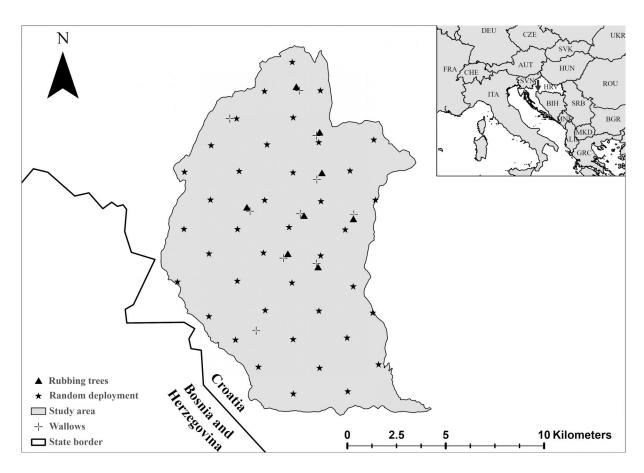

611

Figure 1- Locations of the camera traps (ten wallows; eight rubbing trees; 40 random locations	s)
in the study area (7800 ha) in central Croatia.	

- Figure 2- Wild boar (*Sus scrofa*) seasonal relative abundance index (RAI) obtained at wallows, rubbing trees and random locations in central Croatia.
- Figure 3- Ratio of different wild boar (*Sus scrofa*) behaviours throughout different seasons captured with camera traps on wallows in central Croatia.
- Figure 4- Overlap of overall and seasonal wild boar (*Sus scrofa*) activity patterns obtained at wallows and random locations in central Croatia.

Locations of the camera traps (ten wallows; eight rubbing trees; 40 random locations) in the study area (7800 ha) in central Croatia.

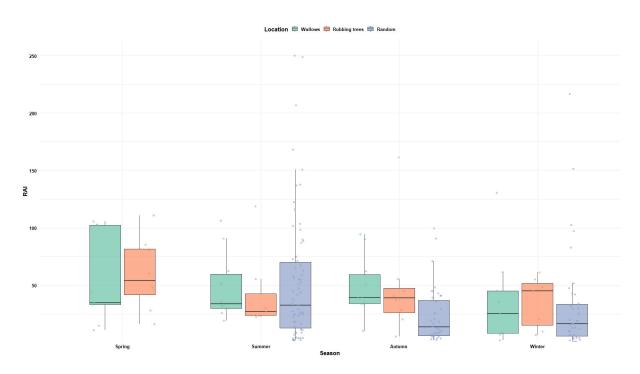


Figure 2- Wild boar (Sus scrofa) seasonal relative abundance index (RAI) obtained at wallows, rubbing trees and random locations in central Croatia.

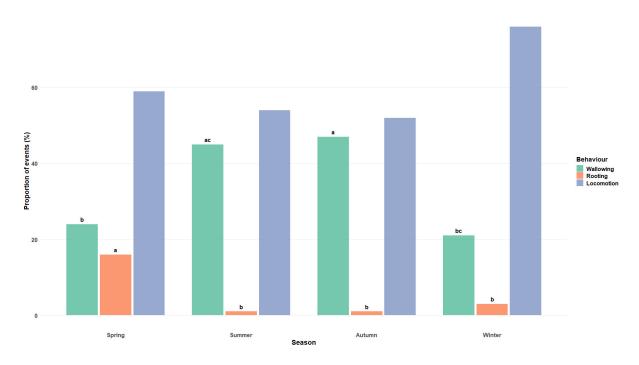


Figure 3- Ratio of different wild boar (Sus scrofa) behaviours throughout different seasons captured with camera traps on wallows in central Croatia.

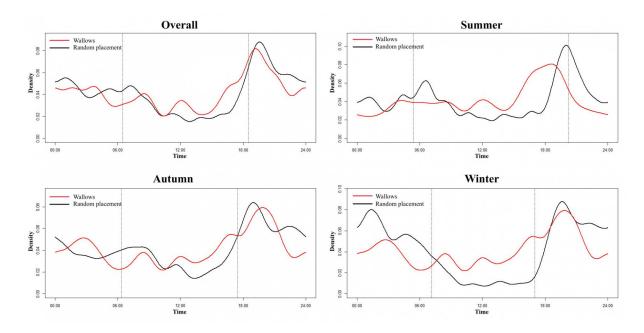


Figure 4- Overlap of overall and seasonal wild boar (Sus scrofa) activity patterns obtained at wallows and random locations in central Croatia.

Manuscript body

Download source file (68.14 kB)

Figures

Figure 1 - Download source file (909.56 kB)

Locations of the camera traps (ten wallows; eight rubbing trees; 40 random locations) in the study area (7800 ha) in central Croatia.

Figure 2 - Download source file (4.8 MB)

Figure 2- Wild boar (Sus scrofa) seasonal relative abundance index (RAI) obtained at wallows, rubbing trees and random locations in central Croatia.

Figure 3 - Download source file (4.8 MB)

Figure 3- Ratio of different wild boar (Sus scrofa) behaviours throughout different seasons captured with camera traps on wallows in central Croatia.

Figure 4 - Download source file (7.24 MB)

Figure 4- Overlap of overall and seasonal wild boar (Sus scrofa) activity patterns obtained at wallows and random locations in central Croatia.

Supplementary Online Material

File 1 - Download source file (45.7 kB)

Table S1- Monitored trees that wild boar (Sus scrofa) used for rubbing with seasonal number of trapping days and number of rubbing events.

File 2 - Download source file (52.99 kB)

Measurements of the monitored wallows.

File 3 - Download source file (18.21 kB)

Results of the model.

File 4 - Download source file (19.8 kB)

Post-hoc comparisons.

File 5 - Download source file (33.24 kB)

Activity pattern of wild boar (Sus scrofa) on wallows captured with camera traps during spring in central Croatia.

File 6 - Download source file (1.12 MB)

Wild boar (Sus scrofa) females with pigglets using a wallow.

File 7 - Download source file (1.35 MB)

Wild boar (Sus scrofa) female using a rubbing tree with pigglets.

File 8 - Download source file (629.76 kB)

Wild boar (Sus scrofa) male rubbing against the tree.

File 9 - Download source file (820.47 kB)

Wild boar (Sus scrofa) male using a wallow.

File 10 - Download source file (5.93 MB)

Overlap of summer 2023 and summer 2024 wild boar (Sus scrofa) activity pattern recorded on wallows.

File 11 - Download source file (206.31 kB)

Confirmation that the text has been proofread by an authorised translator.

