The diet of the house mouse in three protected islands in Italy: results from DNA metabarcoding

Francesco Gallozzi^{1,2}, Riccardo Castiglia^{1,3}, Filippo Dell'Agnello⁴, Paolo Sposimo⁴, Dario Capizzi⁵, Paolo Colangelo^{2,3}

¹Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188, Rome, Italy

²National Research Council, Research Institute on Terrestrial Ecosystems, via Salaria km 29.300, 00015, Montelibretti (Rome), Italy

³National Biodiversity Future Center, 90133 Palermo, Italy

⁴Nature and Environment Management Operators Srl (NEMO), Viale Mazzini 26, 50132 Firenze, Italy ⁵Latium Region, Directorate Environment, via di Campo Romano 65, 00173 Rome, Italy

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

Paolo Colangelo - 0 0000-0002-0283-3618

Abstract:

Islands are globally recognized biodiversity hotspots but remain highly vulnerable to invasive species. Among these, the house mouse (Mus musculus) is a widespread invasive rodent, known to impact native island ecosystems significantly. While extensive research has been conducted on its diet and ecological effects in oceanic islands, data from the Mediterranean region are scarce. This study provides a first overview of the diet of house mice from three Italian islands (San Domino, Ventotene, and Pantelleria) using a DNA metabarcoding approach. By analysing gut content and faecal samples, we identified 172 Amplicon Sequence Variants (ASVs), including 78 invertebrate, 46 plant, and 3 vertebrate ASVs. Similarly to what emerged from previous studies on oceanic islands, invertebrate consumption was dominated by Lepidoptera, with Noctuidae and Nymphalidae as the most represented families, while plant consumption was primarily composed of Fabaceae and Poaceae. However, no evidence of predation on native vertebrates was found and the only vertebrate sequences found were attributable to human food, indicating possible human-mice interactions on inhabited islands. Ventotene, the only rat-free island at the time of sampling, exhibited the widest niche breadth, suggesting that the absence of mammalian competitors may influence mouse feeding behaviour. These findings highlight the need for a context-specific approach when assessing rodent impacts in the Mediterranean and confirm the possible negative effects of mice on arthropods island populations.

Keywords: diet, Mediterranean, house mouse, invasive rodents, island conservation.

Received: 2025-04-14 Revised: 2025-08-11 Accepted: 2025-11-13 Final review: 2025-08-27

Short title

The diet of the house mouse in three Italian islands

Corresponding author

Francesco Gallozzi

Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188, Rome, Italy; email: francesco.gallozzi@uniroma1.it

The diet of the house mouse in three protected islands in Italy: results from DNA metabarcoding

ABSTRACT

2

3

5

6

8

10

11

12

13

15

16

17

18

19

20

21

22

23

25

26

27

28

29

Islands are globally recognized biodiversity hotspots but remain highly vulnerable to invasive species. Among these, the house mouse (Mus musculus) is a widespread invasive rodent, known to impact native island ecosystems significantly. While extensive research has been conducted on its diet and ecological effects in oceanic islands, data from the Mediterranean region are scarce. This study provides a first overview of the diet of house mice from three Italian islands (San Domino, Ventotene, and Pantelleria) using a DNA metabarcoding approach. By analysing gut content and faecal samples, we identified 172 Amplicon Sequence Variants (ASVs), including 78 invertebrate, 46 plant, and 3 vertebrate ASVs. Similarly to what emerged from previous studies on oceanic islands, invertebrate consumption was dominated by Lepidoptera, with Noctuidae and Nymphalidae as the most represented families, while plant consumption was primarily composed of Fabaceae and Poaceae. However, no evidence of predation on native vertebrates was found and the only vertebrate sequences found were attributable to human food, indicating possible human-mice interactions on inhabited islands. Ventotene, the only rat-free island at the time of sampling, exhibited the widest niche breadth, suggesting that the absence of mammalian competitors may influence mouse feeding behaviour. These findings highlight the need for a context-specific approach when assessing rodent impacts in the Mediterranean and confirm the possible negative effects of mice on arthropods island populations.

KEYWORDS: invasive rodents; island conservation; Mediterranean; house mouse; diet.

INTRODUCTION

Islands frequently host unique endemic species with limited ranges or breeding sites (Bellard et al., 2017, 2021; Holmes et al., 2019; Russell and Kueffer, 2019). In fact, despite covering only 6.7% of the Earth's land surface, islands are home to approximately 20% of global biodiversity (Kier et al., 2009; Sayre et al., 2019). Invasive rodents are among the most significant threats to island biodiversity, as they have invaded around 80% of the world's archipelagos (Atkinson, 1985; Capizzi et al., 2014; Harper and Bunbury, 2015; Holmes et al., 2019; Moore et al., 2022; Nance et al., 2023). These invasions have had devastating consequences for native species, including documented cases of extinctions (Hilton and Cuthbert, 2010; Bellard et al., 2016a, 2016b; Nance et al., 2023).

32

33

34

35

37

38

39

40

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

The house mouse (*Mus musculus*) is one of the most widespread human-associated mammals in the world (Global Invasive Species Database, 2024; http://www.iucngisd.org/gisd/100 worst.php). Its management is often challenging due to a combination of factors related to its ecology, behaviour and rodenticide resistance (Elliott et al., 2015; Capizzi, 2020; Spatz et al., 2022; Gallozzi et al., 2024). Likewise other invasive rodents, the impact of mice is especially pronounced on islands, where introduced populations have caused significant damages to native ecosystems often resulting in severely altered ecological processes (Eriksson and Eldridge, 2014; Russell et al., 2020). In fact, introduced mice are known for preying on many different island-endemic species. Invertebrates are highly impacted (St Clair, 2011; Watts et al., 2022, Norbury et al., 2023) and many plants have been observed to be potentially threatened by these rodents (Shiels and Pitt, 2014). Furthermore, predation on native reptiles has been observed as well (Wedding, 2007; Norbury et al., 2014, 2023). Moreover, the impacts of mice are usually more relevant when they are the only introduced mammals, with many examples of predation even on seabird eggs and chicks (Wanless et al., 2007; Angel et al., 2009; Bolton et al., 2014; Cuthbert et al., 2016).

The bulk of knowledge about mice impacts comes from oceanic islands. Very few data are available for the Mediterranean region and small islands are still uncovered. Furthermore, no taxonomic data about diet composition is available to date. Having a deeper knowledge about mice's dietary habit may allow us to evaluate if these rodents actually represent a threat for Mediterranean native species. The Mediterranean basin is a globally important biodiversity hotspot, with more than 5000 islands and islets hosting numerous endemic species (Vogiatzakis and Griffiths, 2008; Coll et al., 2010; Peyton et al., 2019). Mediterranean islands are highly anthropized, often serving as popular tourist destinations and with stable human settlements and activities which can provide food and shelter for synanthropic rodents (Capizzi et al., 2024). Differently from oceanic islands, where mice were recently introduced (Jones et al., 2003; Searle et al., 2009; Hardouin et al., 2010), mice have colonized the Mediterranean from the Middle East between 10,000 and 3,000 years ago (Cucchi et al., 2002, 2005; Gabriel et al., 2010). With over 300 islands, Italy is among the island-richest countries in the Mediterranean. Italian islands are home to a wide array of flora and fauna, including many insular endemics (Bonanno and Veneziano, 2016; Muscarella and Baragona, 2017; Senczuk et al., 2019; Sabatelli et al., 2023). Most of these islands are human inhabited and commensal rodents are often present, posing a possible threat to the many endemic and/or endangered taxa (Capizzi, 2020). Indeed, it should be noted that unlike in the case of rats, which have been eradicated from several mediterranean islands, eradications of mice have been achieved in the Mediterranean only once

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

(Capizzi, 2020). The main reason for this low success rate is the short range of activity of the house mouse, requiring capillary bait coverage of an island during eradication. However, applying high bait station density is not always possible and the use of aerial baiting may be constrained by the specifications given on the product labels, which allow their use only in bait containers (Capizzi, 2020).

Despite the persistence and widespread distribution of mice in the Mediterranean, knowledge about dietary habits and impacts in this complex yet extremely interesting environment remains poor and based on traditional methods like behaviour observation, microscopy examination of stomach content or isotopes analysis (Gasperini et al., 2024; Renaud et al., 2024). However, these methods present several limitations in capturing comprehensive food lists with precise taxon identification from fluids or soft tissues (Nielsen et al. 2018; Sato, 2025). For these reasons, in this study, we used a metabarcoding approach to provide data on house mouse diet from three Italian islands with high naturalistic value, thus representing the first available information on this topic from the Mediterranean basin based on this technique. Even though DNA metabarcoding does not allow to reconstruct the actual feeding mode (e.g., predation, secondary consumption, etc...), it is the most reliable way to obtain high sensitivity taxonomic information about the diet composition of a species, and this method is increasingly used to study invasive rodent diet (Sato, 2025). Specifically, we tested (a) if house mice have dietary habits coherent with those observed in oceanic island, thus posing a threat on native fauna and flora, (b) if there are island-specific differences in house mouse diet, and (c) if the high presence of human settlements can determine a shift towards anthropogenic food.

MATERIALS AND METHODS

The study area consists of three islands in Italy: San Domino (Tremiti Archipelago), Ventotene (Eastern Pontine Archipelago) and Pantelleria (Figure 1). All of them are intensely human inhabited but still represent important sites for biodiversity conservation. Particularly, Ventotene lay inside a protected marine area, while San Domino and Pantelleria are part of two national parks (Gargano NP and Pantelleria NP, respectively). Different seabird species breeds in the study area and have been observed to be negatively impacted by invasive rodents: the Scopoli's shearwater (*Calonectris diomedea*) is found in all the three islands, and Ventotene and San Domino host the endangered Yelkouan's shearwater (*Puffinus yelkouan*) (Capizzi et al., 2024). A significant number of endemic plants (e.g., *Centaurea diomedea* in San Domino, *Helichrysum errerae* and *Lymonium cosyrense* in

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Pantelleria, *L. pandatariae* in Ventone) and invertebrates (e.g., *Stenostoma cossyrense*, *Gryllotalpa cossyrensis* and *Acheta pantescus* in Pantelleria) is also found (Pasta and La Mantia, 2013; Muscarella and Baragona, 2017; Galié et al., 2019). Moreover, Pantelleria hosts valuable populations of protected reptiles and mammals, such as the horseshoe whip snake (*Hemorrhois hippocrepis*), the ocellated skink (*Chalcides ocellatus*) and the North African white-toothed shrew (*Crocidura pachyura*) (Corti et al., 2006; Angelici et al., 2009).

The subspecies of the house mouse present in the study area corresponds to Mus musculus domesticus, sometimes referred to by its specific designation Mus domesticus (e.g., Loy et al. 2019). Mice were caught between 2022 and 2023 by using Sherman traps baited with peanut butter. For each sampling session, 60 total traps were located in six 10-traps transects. The transects were set to cover the three main habitats present on the islands (i.e., Mediterranean scrub, forest and urban areas), thus guaranteeing a double replicate for each habitat type. For each island, we collected samples in two separate 5 night-long sessions: one in autumn/winter and one in spring/summer to collect as much of seasonal variability. All the trapping activities were authorized jointly with the monitoring and biosecurity activities of the projects LIFE PonDerat (Ventotene), LIFE Diomedee (San Domino) and "Conservazione della Biodiversità del Lago Bagno dell'Acqua" (Pantelleria). A total of 41 mice were collected and stored in 96% pure ethanol (see Supplementary Materials for details). Gut content from stomach and faecal samples from intestines were collected from each mice in the lab. To avoid overrepresentation of the remnants of prey hard parts, we excluded those individuals with empty or less than a quarter full stomach (Le Roux et al., 2002). Following this procedure, DNA was successfully extracted from 10 mice per island using Zymo Quick-DNA Fecal/Soil Microbe Microprep kit according to provider's instructions. The extracted DNA was then used to amplify target genes via PCR. Three markers were used in this study: 16S rRNA for invertebrates, 12S rRNA for vertebrates and P6-loop region of the chloroplast trnL gene for plants. The primers used are reported Table Nextera adapters were added the primers (FW: TCGTCGGCAGCGTCAGATGTGTATAAGAGACA, RV: GTCTCGTGGGCTCGGAGATGTGTATAA). For each marker, all samples from the same island were pooled together after amplification to obtain a DNA concentration between 5 and 20 ng/µl, required for sequencing. Amplicons were then shipped to an external service (BMR Genomics) where an indexing PCR was performed using the Nextera XT Kit and the products were sequenced with Illumina MiSeq using Paired End 2x300 bp sequencing strategy.

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Pianka index.

For each marker, raw sequences were quality checked using FastQC (Andrews, 2010). Primers and Illumina adapters were removed from the raw sequences using the cutadapt software (Martin, 2011). The trimmed sequences were then exported into an R environment where we used the dada2 package (Callahan et al., 2016). Sequences with a quality score less than or equal to 2 were discarded and chimeras were removed with removeBimeraDenovo function using the default method "consensus". The remaining forward and reverse reads were merged (function mergePairs) and taxonomic assignation was performed for each unique sequence present in the data, defined as Amplicon Sequence Variant (ASV). The ASVs identify and differentiate sequences based on singlenucleotide differences, offering a more precise view of the taxonomic composing of the diet. Custom reference databases for the three genetic markers used in this study were generated using CRABS software (Jeunen et al., 2023). In order to include the widest range of possible taxa, the reference databases were generated by downloading from NCBI all the available sequences and taxonomy information belonging to all the taxonomic classes found on the studied islands. After that, an insilico PCR was performed to extract the amplicon region of the primer set and a taxonomic lineage for each sequence in the reference database was generated using the command assign_tax. Subsequently, we dereplicated the reference databases with the method uniq_species, which allows to retain all unique sequences for each species in the database. The databases were then cleaned up and exported in FASTA format, suitable for dada2 in R. Due to the reduced length (~150 bp) of our sequences, the dada2 default minimum bootstrap confidence ≥ 50 was chosen for assigning taxonomic levels (Edgar, 2018). To avoid including mice's own DNA in the analysis, the ASVs assigned to family Muridae were dropped. For those not assigned to family level but belonging to either Mammalia or Rodentia, a BLAST was performed and, if matching with Muridae sequences, they were removed as well. Sequences matching with the plant genus Arachis were dropped as well, being potentially related to bait consumption inside the trap. Then, the frequency of the remaining ASVs was calculated for each island. As the frequencies of invertebrate, plant and vertebrate ASVs are the results of separate PCRs and could not be compared with each other, the niche breadth was assessed for each of these taxonomic category separately for each island by using the standardized Levins index (B) (Levins, 1968). Niche overlap among the three studied islands was also estimated using the

RESULTS

A total of 606,692 raw reads for invertebrates, 456,142 for vertebrates and 550,604 for plants were retrieved from our samples. Following trimming, filtering and removing primers and chimeras, 265,673 paired-reads for invertebrates, 216,590 for vertebrates and 156,820 for plants were successfully merged and were suitable for the analyses. After dropping 19 ASVs belonging to Muridae and 2 belonging to *Arachis*, 46 ASVs were obtained for plants, 78 for invertebrates and 3 for vertebrates. Specifically, invertebrates from 5 classes, 14 orders, and 28 families were detected. Lepidoptera were the most represented order in all the three islands with Noctuidae and Nymphalidae being the most represented families. The second most common invertebrate order were Coleoptera, particularly abundant in Ventotene. Among Coleoptera, Curculionidae was the most represented family.

Plants all belonged to the taxonomic class Magnoliopsida and were distributed among 18 orders and 21 families. Fabaceae and Poaceae were frequent in all the islands, followed by Asteraceae, Euphorbiaceae, Betulaceae and Malvaceae.

The three vertebrate ASVs all belonged to domestic species: two ASVs from San Domino and Ventotene were identified as turkeys (*Meleagris gallopavo*) and one from Pantelleria as goats (*Capra hircus*). Results for invertebrates and plants are shown in Figure 2 and 3. Further details about ASVs frequency are available in Supplementary Materials.

Ventotene is the island with the widest niche breadth for invertebrates (B = 0.05), followed by Pantelleria (B = 0.01) and San Domino (B = 0.0009). A similar pattern is observed for plants, with Ventotene and Pantelleria showing B = 0.14 and B = 0.13, respectively, followed by San Domino (B = 0.08). Given the low number of vertebrate ASVs (one for Pantelleria, two for San Domino and two for Ventotene) and the likely anthropic origin (see discussion), the Levins index for this taxonomic group was not computed. The Pianka's index indicates a high overlap for the invertebrate component of the diet between the studied islands (O = 0.825-0.999), while some differences emerge for the plant component (O = 0.478-0.891). Detailed information about niche breath and overlap across the islands is available in Table 2 and 3.

DISCUSSION

Our study provides the first data on the diet of the house mouse from islands located in the Mediterranean basin. Despite the presence of some methodology limitations like differences in primer efficiency, possible contamination and low taxonomic resolution (Cuff et al. 2021; Tercel et

al. 2021; Sato, 2025), the DNA-based approach allows to detect also the smallest, softer digestible items that would not be considered with morphological examination (Ingerson-Mahar, 2002; Cuff et al., 2021; Sato, 2025). This is a particularly critical issue for small mammals. Even though the low sample size, the reduced study area and the lack of numerous temporal replicas do not allow our results to be exhaustive for an accurate assessment of mice diet on Mediterranean islands, they are a valuable insight into house mouse ecology in the area. According to previous studies, a sample of 5-9 mice is sufficient to provide more than 90% of main categories of prey items (Le Roux et al., 2002). Indeed, this study provides an excellent starting point and a protocol to follow for future and more detailed assessments. It also lays the foundations for implementing evidence-based management strategies.

As expected, mice from our study area are generalist, feeding on a wide range of invertebrates and plants. Specifically, their diet appears to be composed of arthropods (mostly Lepidoptera) and large-seeded plants, like Poaceae and Fabaceae. This result perfectly matches what emerged from the only available previous studies on this topic performed on oceanic islands that showed how mice have complex, omnivorous diets but tend to prefer arthropods (especially Lepidoptera larvae), followed by seeds and other vegetative material (Smith et al., 2002; Shiels et al., 2013; Shiels and Pitt, 2014; Holthuijzen et al., 2023).

From a conservation perspective, even though the identification at species level of some endemic plants like *Centaurea diomedea* from San Domino and *Helichrysum errerae* from Pantelleria was not possible, they all belong to Asteraceae, a well-represented family in the diet of the mice sampled in this study. Similarly, our results also raise some concern about native arthropods diversity and community, especially regarding nymphalid butterflies, a very frequent taxon in house mouse diet. It is worth noting that one of Italy's most endangered island-endemic invertebrates, the Ponza grayling (*Hipparchia sbordonii*), belongs in fact to Nymphalidae (Lepidoptera). This species' range is now restricted to the island of Ponza (Pontine Archipelago) but it was once found also in Ventotene (Bonelli et al. 2018). Anyway, recent surveys failed in finding this species on the island (Sbordoni, 2018). Therefore, according to our results, mice could have favoured its decline and could pose a threat on the remaining populations of Ponza grayling by feeding on its larvae. Interestingly, an apparent selection for lepidopteran preys (moths and butterflies) is consistent across a wide biogeographical range investigated, since our findings confirm the results obtained on oceanic islands (Shiels et al., 2011). Accordingly, other nymphalid butterflies whose insular populations are valuable conservation targets would be at risk on invaded islands (e.g., *Coenonympha corinna*,

Printer to the printe

Pyronia cecilia, Hipparchia aristaeus, Argynnis pandora, variously distributed across several islands in Italy) (Dapporto et al., 2017). In detail, a major concern is raised for those species with short flight periods, limited dispersal capability and/or small populations on remote islands, that have lower probability of recolonization from surrounding areas (Dapporto et al., 2017). Of course, these are totally speculative hypotheses that need to be validated through further analysis with higher taxonomic resolution. Moreover, dietary assessments alone cannot reveal if an item is found in the diet of mice following actual predation, secondary consumption or even contamination. Accordingly, it needs to be considered that detecting a taxon in the diet does not necessarily imply it is consumed in significant quantities, and even if it is, this does not automatically translate into a demographic impact on the prey species. However, the information provided here may still be considered for future conservation plans targeting native arthropods or plants.

On the other hand, a sequence of *Helicoverpa* sp. (Lepidoptera: Noctuidae) emerged from Ventotene. Some species belonging to this genus are among the worst lepidopteran agricultural pests in the world (Jones et al., 2019). Also among plants we found some introduced taxa like *Paspalum* sp. and *Oxalis* sp. which are often considered invasive (Gallardo, 2014; Gaetani et al., 2017). Accordingly, previous studies have shown that mice can feed also on non-native invertebrates and plants, sometimes acting like a natural control of many invasive species (Holthuijzen et al., 2023; Sato, 2025). Therefore, their role in controlling pest arthropods populations should not be underestimated, especially in a biogeographic context in which mice have been present for thousands of years, like the Mediterranean basin and its islands (Solano et al., 2013; Sciandra et al., 2022; Gallozzi et al., 2025). In such cases, mice can represent an important component of island ecosystems and their eradication may lead to an unexpected increase of unwanted species' populations. Anyway, even though the data at hand for Italian islands is mostly about rats, no sudden increase of unwanted invertebrate species following rodent eradications has ever been recorded (Capizzi et al., 2016).

A widest niche breadth emerged in Ventotene, especially in invertebrates. When sampling occurred, Ventotene was the only rat-free location among those included in this paper, so mice were the only terrestrial mammal present on the island (Gotti et al., 2022). It is known that, when they have no other mammalian competitor, mice tend to expand their feeding habits and increase significantly both in population and predatory behaviour (Cuthbert et al., 2016; Capizzi et al., 2024). Therefore, the absence of rats can be a possible explanation for what we observed in Ventotene. Of course, due to the low sample size we cannot exclude random effects, and this hypothesis needs to be confirmed

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

273

274

275

276

277

278

279

280

through further investigation. However, acquiring information about the ecology and in particular the diet of the house mouse is considered a good practice to follow in eradication planning more and more frequently, as this may increase the chances of detecting dietary shifts and potential negative impacts on prey species as early as possible. As a matter of fact, this represents crucial information for including mice in eradications efforts, especially when the presence and effects of mice tend to be overlooked (Samaniego et al., 2024).

The Pianka's index highlighted very few differences between the studied island, mostly regarding the plant component of the mice's diet. Specifically, Ventotene and San Domino show a high niche overlap with each other (O = 0.891), while Pantelleria exhibits strong overlap with Ventotene (O = 0.732) and only a partial overlap with San Domino (O = 0.478). This probably reflects the presence of some island-specific factors (geographic location, morphology, human population density) that may influence the presence of different habitat types, plant species and resource availability. On the other hand, the high niche overlap observed for the invertebrate component of mice's diet confirms the widespread tendency of the house mouse to select lepidopterans as their preferred prey item, as already observed in previous studies (Shiels et al., 2013; Shiels and Pitt, 2014; Holthuijzen et al., 2023). Anyway, differently from what happens in oceanic islands (Holthuijzen et al., 2023), we did not find any trace of seabirds or other native vertebrates in mice's gut content/faeces and the only vertebrate sequences we found belong to goats (Capra hircus) and turkeys (Meleagris gallopavo). Both species are raised by local people on the studied islands (Gallozzi's observation). Therefore, they can be easily found by mice either in farms or as food waste inside trash bins. This is coherent with the hypothesis that, on intensely inhabited islands such the ones included in this paper, mice can exploit anthropogenic resources. This suggests that human-mouse interaction is probably playing a role in Mediterranean islands, providing sustenance and shelter for these animals. Anyway, given the low frequency of human-related items in mice's diet, it is likely that food of anthropic origin represents only a small proportion of their feeding habits, and these animals rather feed on wild arthropods and plants. Since we pooled all the individuals coming from the same island before sequencing, we cannot exclude that the small proportion of anthropogenic food may reflect the feeding habits of those individuals living in urban areas. Therefore, given the restricted home range of mice and their opportunistic behaviour (Gasperini et al., 2024), there can be significant differences in the diet of the individuals living inside and outside human-inhabited areas.

To conclude, our results provide, for the first time from small Mediterranean islands, taxonomic data about house mouse diet composition. This information can be extremely useful to identify which

taxa may respond to mice removal, revealing an interesting pattern of interaction between these rodents, arthropods, plants and humans on Mediterranean islands. Unlike the case of rats, where assessment of eradication priorities is usually based on seabird communities to protect (Capizzi et al. 2010), in the case of house mouse eradication, invertebrates should be given greater consideration, given their predominance in the diet of mice. Indeed, based on our results and supported by previous studies conducted in other geographic areas (Watts et al., 2022, Norbury et al., 2023), it seems that arthropods may benefit the most from mice removal, especially when there are no other mammalian competitors on the island. However, the overall effects of such operations should be carefully evaluated also considering possible unexpected increase in population of unwanted pests. In these circumstances, the well-being of already existing species and ecosystems should be always prioritized over uncertain potential benefits for a single taxon (Ricciardi and Simberloff, 2014).

Acknowledgements: mice from Pantelleria were handled under permission of the Ministero della Transizione Ecologica (MITE prot. 26,489; 24/05/21). Mice from Ventotene and San Domino were trapped during the monitoring and biosecurity activities of the projects LIFE PonDerat and LIFE Diomedee, co-financed by the European Union. We thank Fabrizio Bartolini for his valuable suggestions about results interpretation. We are also grateful to all the staff of the Pantelleria National Park for logistically supporting our research and the Municipality of Ventotene for hosting us during our stay on the island.

Competing interests: the authors declare no competing interests.

Author contribution: Conceptualization, P.C., R.C. and F.G.; Methodology, P.C. and F.G.; Formal analysis, F.G. and P.C.; Data curation, F.G.; Writing, review and editing, F.G., R.C., P.C., P.S., F.D.A., D.C.; Funding acquisition, P.C., R.C. and F.G.; all authors have read and agreed to the published version of the manuscript.

Funding information: this study is part of the PhD thesis of FG and was funded by the doctorate school in Environmental and Evolutionary Biology (University "La Sapienza"), Progetti Avvio alla Ricerca - Prot. AR12318871ED38E3 (University "La Sapienza") and CNR-IRET. Field work in Pantelleria was funded by the project "Conservazione della Biodiversità del Lago Bagno dell'Acqua (Isola di

Pantelleria)" (Prot. 0000645; 01/03/2022) funded by Pantelleria National Park to RC. This project was implemented under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP, H43C22000530001 Project title "National Biodiversity Future Center - NBFC".

References

309

310

311

312

313

314

315

316

317

318

326

327

328

329

330

331

332

333

337

338

341 342

- Andrews, S. F. (2010). A quality control tool for high throughput sequence data. Bioinformatics in the post-genomic era: Genome, transcriptome, proteome, and information-based medicine.
- Angel, A., Wanless, R.M., Cooper, J., 2009. Review of impacts of the introduced house mouse on islands in the Southern Ocean: are mice equivalent to rats? Biol. Invasions 11, 1743–1754.
- Angelici, F., Laurenti, A., & Nappi, A. (2009). A checklist of the mammals of small Italian islands.

 Hystrix, 20(1): 3-27
- Atkinson, I.A.E., 1985. The spread of commensal species of Rattus to oceanic islands and their effects on island avifaunas. In: Moors, P.J. (Ed.), Conservation of Island Birds. International Council for Bird Preservation, Cambridge, United Kingdom, pp. 35–81.
 - Bellard, C., Cassey, P., Blackburn, T.M., 2016a. Alien species as a driver of recent extinctions. Biol. Lett. 12 (2), 20150623.
 - Bellard, C., Genovesi, P., Jeschke, J.M., 2016b. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 283 (1823), 20152454.
 - Bellard, C., Rysman, J.F., Leroy, B., Claud, C., Mace, G.M., 2017. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1 (12), 1862–1869.
 - Bellard, C., Bernery, C., Leclerc, C., 2021. Looming extinctions due to invasive species: irreversible loss of ecological strategy and evolutionary history. Glob. Chang. Biol. 27 (20), 4967–4979.
- Bolton, M., Stanbury, A., Baylis, A.M., Cuthbert, R., 2014. Impact of introduced house mice (Mus musculus) on burrowing seabirds on Steeple Jason and Grand Jason Islands, Falklands, South Atlantic. Polar Biol. 37 (11), 1659–1668.
 - Bonanno, G., & Veneziano, V. (2016). New insights into the distribution patterns of Mediterranean insular endemic plants: The Sicilian islands' group. *Flora*, 224, 230-243.
- Bonelli, S., Casacci, L. P., Barbero, F., Cerrato, C., Dapporto, L., Sbordoni, V., ... & Balletto, E. (2018).
 The first red list of Italian butterflies. *Insect Conservation and Diversity*, *11*(5), 506-521.
 - Cuff, J. P., Windsor, F. M., Tercel, M. P., Kitson, J. J., & Evans, D. M. (2022). Overcoming the pitfalls of merging dietary metabarcoding into ecological networks. *Methods in Ecology and Evolution*, *13*(3), 545-559.

356

357 358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016).

 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature methods*, *13*(7), 581-583.
- Capizzi, D., Baccetti, N., & Sposimo, P. (2010). Prioritizing rat eradication on islands by cost and effectiveness to protect nesting seabirds. Biological conservation, 143(7), 1716-1727.
- Capizzi, D., Baccetti, N., & Sposimo, P. (2016). Fifteen years of rat eradication on Italian islands. *Problematic Wildlife: A Cross-Disciplinary Approach*, 205-227.
- Capizzi, D., 2020. A review of mammal eradications on Mediterranean islands. Mammal Rev. 50 (2), 124–135.
- Capizzi, D., Sposimo, P., Sozio, G., Fratini, S., Zanet, S., Biondo, C., Romano, A., Dell'Agnello, F.,
 Baccetti, N., Petrassi, F., 2024. For birds and humans: challenges and benefits of rat eradications from
 an inhabited island (Ventotene, Central Italy). Pest Manag. Sci. https://doi.org/10.1002/ps.7947.
 - Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F.B.R., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., Dailianis, T., 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842.
 - Corti, C., Lo Cascio, P., & Razzetti, E. (2006). Herpetofauna of the Italian islands. *Atlas of Italian amphibians and reptiles. Firenze: Edizioni Polistampa*, 612-43.
 - Cucchi, T., Vigne, J., Auffray, J., Croft, P., Peltenburg, E., 2002. Passive transport of the house mouse (Mus musculus domesticus) to Cyprus at the Early Preceramic Neolithic (late 9th and 8th millennia cal. BC). C. R. Palevol 1 (4), 235–241.
 - Cucchi, T., Vigne, J.D., Auffray, J.C., 2005. First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: a zooarchaeological revision of subfossil occurrences. Biol. J. Linn. Soc. 84 (3), 429–445.
 - Cuthbert, R.J., Wanless, R.M., Angel, A., Burle, M.H., Hilton, G.M., Louw, H., Visser, P., Wilson, J.W., Ryan, P.G., 2016. Drivers of predatory behavior and extreme size in house mice Mus musculus on Gough Island. J. Mammal. 97 (2), 533–544.
 - Dapporto, L., Cini, A., Menchetti, M., Vodă, R., Bonelli, S., Casacci, L.P., Dincă, V., Scalercio, S., Hinojosa, J.C., Biermann, H. Forbicioni, L., 2017. Rise and fall of island butterfly diversity: Understanding genetic differentiation and extinction in a highly diverse archipelago. *Diversity and Distributions*, 23(10), pp.1169-1181.
 - Edgar, R. C. (2018). Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6: e4652.
- Elliott, G., Greene, T. C., Nathan, H. W., & Russell, J. C. (2015). Winter bait uptake trials and related field work on Antipodes Island in preparation for mouse (*Mus musculus*) eradication. Wellington, New Zealand: Publishing Team, Department of Conservation.
- Eriksson, B., Eldridge, D.J., 2014. Surface destabilisation by the invasive burrowing engineer Mus musculus on a sub-Antarctic island. Geomorphology 223, 61–66.

- Gabriel, S.I., Johannesdottir, F., Jones, E.P., Searle, J.B., 2010. Colonization, mousestyle. BMC Biol. 8, 1–3.
 - Gallozzi, F., Attili, L., Colangelo, P., Giuliani, D., Capizzi, D., Sposimo, P., Dell'Agnello, F., Lorenzini, R., Solano, E., & Castiglia, R. (2024). A survey of VKORC1 missense mutations in eleven Italian islands reveals widespread rodenticide resistance in house mice. *Science of the Total Environment*, 953, 176090.
 - Gasperini, S., Bartolommei, P., Bonacchi, A., Dell'Agnello, F., Manzo, E., Spano, G., & Cozzolino, R. (2024). An insight into the ecology of the invasive house mouse on small Mediterranean islands. *Biological Invasions*, *26*(6), 1735-1747.
 - Gotti, C., Capizzi, D., Petrassi, F., Sposimo, P., dell'Agnello, F., Baccetti, N., Raganella Pelliccioni, E., 2022. L' eradicazione del Ratto nero (Rattus rattus) dalle isole del Mediterraneo: linee guida, buone pratiche, casi di studio. Ispra, Manuali e Linee Guida n. 199/2022.
 - Hardouin, E. A., Chapuis, J. L., Stevens, M. I., Van Vuuren, J. B., Quillfeldt, P., Scavetta, R. J., ... & Tautz, D. (2010). House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. *BMC Evolutionary Biology*, 10, 1-15.
 - Harper, G.A., Bunbury, N., 2015. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627.
 - Hilton, G.M., Cuthbert, R.J., 2010. The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152 (3), 443–458.
 - Holmes, N.D., Spatz, D.R., Oppel, S., Tershy, B., Croll, D.A., Keitt, B., Genovesi, P., Burfield, I.J., Will, D.J., Bond, A.L., Wegmann, A., Aguirre-Munoz, A., Raine, A.F., Knapp, C.R., Hung, C.H., Wingate, D., Hagen, E., M´endez-S´ anchez, F., Rocamora, G., Yuan, H.W., Fric, J., Millett, J., Russell, J.C., Liske-Clark, J., Vidal, E., Jourdan, H., Campbell, K., Springer, K., Swinnerton, K., Gibbons-Decherong, L., Langrand, O., Brooke, M.L., McMinn, M., Bunbury, N., Oliveira, N., Sposimo, P., Geraldes, P., McClelland, P., Hodum, P., Ryan, P.G., Borroto-Paez, R., Pierce, R., Griffiths, R., Fisher, R.N., Wanless, R., Pasachnik, S.A., Cranwell, S., Micol, T., Butchart, S.H.M., 2019. Globally important islands where eradicating invasive mammals will benefit highly threatened vertebrates. PLoS One 14 (3), e0212128.
 - Gaetani, M., Volterrani, M., Magni, S., Caturegli, L., Minelli, A., Leto, C., ... & Grossi, N. (2017). Seashore paspalum in the Mediterranean transition zone: phenotypic traits of twelve accessions during and after establishment. *Italian Journal of Agronomy*, *12*(2), 808.
 - Galié, M., Gasparri, R., Biondi, E., Perta, R. M., Biscotti, N., Pesaresi, S., & Casavecchia, S. (2019). Reproductive traits of three species endemic to the Puglia region (south-eastern Italy). *Plant Sociology*, *56*(1), 9-18.
 - Gallardo, B. (2014). Europe's top 10 invasive species: relative importance of climatic, habitat and socio-economic factors. *Ethology Ecology & Evolution*, 26(2-3), 130-151.
 - Gallozzi, F., Attili, L., Solano, E., Colangelo, P., & Castiglia, R. (2025). New genetic data suggest ancient colonization of southern Italian islands by the western European house mouse Mus musculus domesticus. *Mammal Research*, 1-6.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

453

454

455

456

- Gasperini, S., Bartolommei, P., Bonacchi, A., Dell'Agnello, F., Manzo, E., Spano, G., & Cozzolino, R. (2024). An insight into the ecology of the invasive house mouse on small Mediterranean islands. *Biological Invasions*, *26*(6), 1735-1747.
- Holthuijzen, W. A., Flint, E. N., Green, S. J., Plissner, J. H., Simberloff, D., Sweeney, D., ... & Jones, H. P. (2023). An invasive appetite: Combining molecular and stable isotope analyses to reveal the diet of introduced house mice (Mus musculus) on a small, subtropical island. *Plos one*, *18*(10), e0293092.
- Ingerson-Mahar, J. (2002). Relating diet and morphology in adult carabid beetles. *The agroecology* of carabid beetles, 111-136.
- Jeunen, G. J., Dowle, E., Edgecombe, J., von Ammon, U., Gemmell, N. J., & Cross, H. (2023). crabs—
 A software program to generate curated reference databases for metabarcoding sequencing data. *Molecular ecology resources*, *23*(3), 725-738.
 - Jones, A. G., Chown, S. L., & Gaston, K. J. (2003). Introduced house mice as a conservation concern on Gough Island. *Biodiversity & Conservation*, 12, 2107-2119.
 - Kartzinel, T.R., Pringle, R.M. (2005) Molecular detection of invertebrate prey in vertebrate diets: Trophic ecology of Caribbean island lizards. Mol. Ecol. Resour. 15, 903–914.
 - Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., ... & Barthlott, W. (2009). A global assessment of endemism and species richness across island and mainland regions. *Proceedings of the National Academy of Sciences*, 106(23), 9322-9327.
 - Le Roux, V., Chapuis, J. L., Frenot, Y., & Vernon, P. (2002). Diet of the house mouse (Mus musculus) on Guillou Island, Kerguelen archipelago, Subantarctic. *Polar Biology*, *25*, 49-57.
 - Levins, R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University Press.
 - Loy, A., Aloise, G., Ancillotto, L., Angelici, F.M., Bertolino, S., Capizzi, D., Castiglia, R., Colangelo, P., Contoli, L., Cozzi, B., Fontaneto, D., Lapini, L., Maio, N., Monaco, A., Mori, E., Nappi, A., Podestà, M., Russo, D., Sarà, M., Scandura, M. & Amori, G. (2019). Mammals of Italy: an annotated checklist. *Hystrix* 30, 87–106.
 - Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet. journal*, 17(1), 10-12.
- Moore, J.H., Palmeirim, A.F., Peres, C.A., Ngoprasert, D., Gibson, L., 2022. Invasive rat drives complete collapse of native small mammal communities in insular forest fragments. Curr. Biol. 32 (13), 2997–3004.
- Muscarella, C., & Baragona, A. (2017). The endemic fauna of the Sicilian islands. *Biodiversity Journal*, *8*(1), 249-278.
 - Nance, A.H., Mitchell, W.F., Dawlings, F., Cook, C.N., Clarke, R.H., 2023. Rodent predation and specialised avian habitat requirements drive extinction risk for endemic island songbirds in the south-west Pacific. Emu 123 (3), 217–231.
 - Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. and Kratina P. 2018. Diet tracing in ecology: method comparison and selection. Methods in Ecology and Evolution 9: 278–291

- Norbury, G., van den Munckhof, M., Neitzel, S., Hutcheon, A., Reardon, J., Ludwig, K., 2014. Impacts of invasive house mice on post-release survival of translocated lizards. N. Z. J. Ecol. 322–327.
- Norbury, G., Wilson, D. J., Clarke, D., Hayman, E., Smith, J., & Howard, S. (2023). Density-impact functions for invasive house mouse (Mus musculus) effects on indigenous lizards and invertebrates. *Biological Invasions*, *25*(3), 801-815.
 - Spatz, D. R., Holmes, N. D., Will, D. J., Hein, S., Carter, Z. T., Fewster, R. M., ... & Russell, J. C. (2022). The global contribution of invasive vertebrate eradication as a key island restoration tool. *Scientific Reports*, *12*(1), 13391.
 - Pasta, S., & La Mantia, T. (2013). Species richness, biogeographic and conservation interest of the vascular flora of the satellite islands of Sicily: patterns, driving forces and threats. In *Cardona Pons E., Estaún Clarisó I., Comas Casademont M. & Fraga i Arguimbau P.(eds.), Islands and plants: preservation and understanding of flora on Mediterranean islands. 2nd Bot. Conf. Menorca. Recerca* (Vol. 20, pp. 201-240).
 - Peyton, J., Martinou, A.F., Pescott, O.L., Demetriou, M., Adriaens, T., Arianoutsou, M., Bazos, I., Bean, C.W., Booy, O., Botham, M., Britton, J.R., Lobon Cervia, J., Charilaou, P., Chartosia, N., Dean, H.J., Delipetrou, P., Dimitriou, A.C., Dorflinger, G., Fawcett, J., Fyttis, G., Galandis, A., Galil, B., Hadjikyriakou, T., Hadjistylli, M., Ieronymidou, C., Jimenez, C., Karachle, P., Kassinis, N., Kerametsidis, G., Kirschel, A.N.G., Kleitou, P., Kleitou, D., Manolaki, P., Michailidis, N., Mountford, J.O., Nikolaou, C., Papatheodoulou, A., Payiatas, G., Ribeiro, F., Rorke, S.L., Samuel, Y., Savvides, P., Schafer, S.M., Serhan Tarkan, A., Silva-Rocha, I., Top, N., Tricarico, E., Turvey, K., Tziortzis, I., Tzirkalli, E., Verreycken, H., Winfield, I.J., Zenetos, A., Roy, H.E., 2019. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125.
 - Pinho, C. J., Santos, B., Mata, V. A., Seguro, M., Romeiras, M. M., Lopes, R. J., & Vasconcelos, R. (2018). What is the giant wall gecko having for dinner? Conservation genetics for guiding reserve management in Cabo Verde. *Genes*, *9*(12), 599.
 - Renaud, S., Hardouin, E. A., Hadjisterkotis, E., Mitsainas, G. P., Bergmann, M., François, E., Fourel, F. & Simon, L. (2024). Trophic differentiation between the endemic Cypriot mouse and the house mouse: a study coupling stable isotopes and morphometrics. *Journal of Mammalian Evolution*, 31(4), 1-14.
 - Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., Coissac, E. (2011). ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145.
 - Ricciardi, A., & Simberloff, D. (2014). Fauna in decline: first do no harm. Science, 345(6199), 884-884.
- Russell, J.C., Kueffer, C., 2019. Island biodiversity in the Anthropocene. Annu. Rev. Environ. Resour. 44, 31–60.
- Russell, J.C., Peace, J.E., Houghton, M.J., Bury, S.J., Bodey, T.W., 2020. Systematic prey preference by introduced mice exhausts the ecosystem on Antipodes Island. Biol. Invasions 22 (4), 1265–1278.

501

502

503

504

505

506

507

508

- Sabatelli, S., Bartocci, S., D'Amici, C., & Audisio, P. (2023). A new species of Ochthebius (Cobalius)(Coleoptera: Hydraenidae: Ochthebiinae) inhabiting marine rockpools of NW Sicily. *The European Zoological Journal*, *90*(2), 790-799.
- Samaniego, A., Kappes, P., Broome, K., Cranwell, S., Griffiths, R., Harper, G., ... & Siers, S. (2021). Factors leading to successful island rodent eradications following initial failure. *Conservation Science* and *Practice*, *3*(6), e404.
 - Samaniego, A., Byrom, A. E., Gronwald, M., Innes, J. G., & Reardon, J. T. (2024). Small mice create big problems: Why Predator Free New Zealand should include house mice and other pest species. Conservation Letters, 17(2), e12996.
 - Sato, J.J. (2025). Diets of rodents revealed through DNA metabarcoding. Mammal Study 50: 3–25.
 - Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., ... & Reed, A. (2019). A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. *Journal of Operational Oceanography*, 12(sup2), S47-S56.
 - Sbordoni V. 2018. Aspetti genetici ed ecologici del declino di popolazioni di farfalle e altri insetti. Atti Accademia Nazionale Italiana di Entomologia Anno LXVI: 159-168.
- Sciandra, C., Mori, E., Solano, E., Mazza, G., Viviano, A., Scarfo, `M., Bona, F., Annesi, F., Castiglia, R., 2022. Mice on the borders: genetic determinations of rat and house mouse species in Lampedusa and Pantelleria islands (Southern Italy). Biogeographia 37 (1).
- Searle, J. B., Jamieson, P. M., Gündüz, İ., Stevens, M. I., Jones, E. P., Gemmill, C. E., & King, C. M. (2009). The diverse origins of New Zealand house mice. *Proceedings of the Royal Society B: Biological Sciences*, *276*(1655), 209-217.
- Senczuk, G., Castiglia, R., Bohme, W., & Corti, C. (2019). Podarcis siculus latastei (Bedriaga, 1879) of the Western Pontine Islands (Italy) raised to the species rank, and a brief taxonomic overview of Podarcis lizards. *Acta Herpetologica*, *14*(2), 71-80.
- Shiels, A. B., Flores, C. A., Khamsing, A., Krushelnycky, P. D., Mosher, S. M., & Drake, D. R. (2013).
 Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). *Biological invasions*, *15*, 1037-1048.
- 522 Shiels, A. B., & Pitt, W. C. (2014). A review of invasive rodent (Rattus spp. and Mus musculus) diets 523 on Pacific Islands. In *Proceedings of the Vertebrate Pest Conference* (Vol. 26, No. 26).
- 524 Smith, V., Avenant, N., & Chown, S. (2002). The diet and impact of house mice on a sub-Antarctic island. *Polar Biology*, *25*, 703-715.
- Solano, E., Franchini, P., Colangelo, P., Capanna, E., Castiglia, R. (2013). Multiple origins of the western European house mouse in the Aeolian Archipelago: clues from mtDNA and chromosomes. Biol. Invasions 15, 729–739.
- 529 St Clair, J.J., 2011. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144 (1), 68–530 81.

Manuscript body

Download DOCX (77.66 kB)

Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat, T., Corthier, G., Brochmann, C., Willerslev, E. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, 14

Tercel, M. P. T. G., Symondson, W. O. C. and Cuff, J. P. 2021. The problem of omnivory: a synthesis on omnivory and DNA metabarcoding. Molecular Ecology 30: 2199–2206.

Vogiatzakis, I., Griffiths, G.H., 2008. Island biogeography and landscape ecology. In: Mediterranean island landscapes: natural and cultural approaches. Springer Netherlands, Dordrecht, pp. 61–81.

Wanless, R.M., Angel, A., Cuthbert, R.J., Hilton, G.M., Ryan, P.G., 2007. Can predation by invasive mice drive seabird extinctions? Biol. Lett. 3 (3), 241–244.

Watts, C., Innes, J., Wilson, D., Fitzgerald, N., Bartlam, S., Thornburrow, D., Smale, M., Barker, G., 2017. Impacts of Mice Alone on Biodiversity: Final Report of a Waikato Field Trial. Landcare Research Contract Report LC2747. Prepared for Waikato Regional Council (33 pp.).

Wedding, C.J., 2007. Aspects of the Impacts of Mouse (Mus musculus) Control on Skinks in Auckland, New Zealand: A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science in Conservation Biology at Massey University (Doctoral dissertation). Massey University.

Amplified region	Fragment length	Primer sequence 5'-3'	Reference
125	73-110 bp	FW: TAGAACAGGCTCCTCTAG	Riaz et al., 2011
		RV: TTAGATACCCCACTATGC	
16S	110 bp	FW: TRAACTCAGATCATGTAA	Kartzinel and Pringle, 2005
		RV: TTAGGGATAACAGCGTWA	Pinho et al., 2018
P6-loop	100-143 bp	FW: GGGCAATCCTGAGCCAA	Taberlet et al., 2007
		RV: CCATTGAGTCTCTGCACCTATC	

Table 1. Primers used for this study.

Island	Category	Levins' standardized index (B)
	Plants	0.13
Pantelleria	Invertebrates	0.01
	Plants	0.08
San Domino	Invertebrates	0.0009
	Plants	0.14
Ventotene	Invertebrates	0.05

Table 2. Levins' standardized index (B) for each island for plants and invertebrates.

INVERTEBRATES	Pantelleria	San Domino	Ventotene
Pantelleria	-	0.999	0.839
San Domino	0.999	-	0.825
Ventotene	0.839	0.825	-
PLANTS	Pantelleria	San Domino	Ventotene
Pantelleria	-	0.478	0.732
Pantelleria San Domino	0.478	0.478	0.732 0.891

Table 3. Niche overlap between the studied island expressed by the Pianka's index (O). The values range from 0 to 1. When O = 1, there is a complete overlap, when O = 0, there is no overlap.

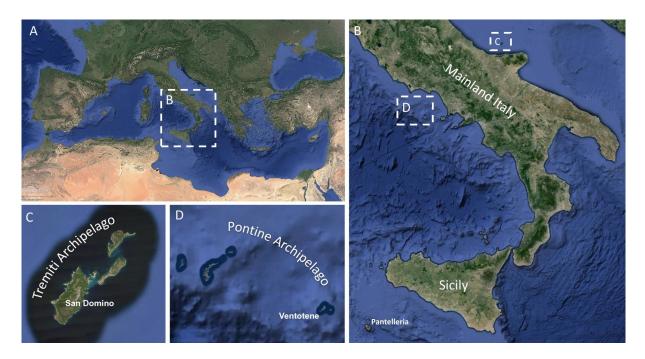


Figure 1. (A) Map of the Mediterranean basin showing the location of the study area. (B) Map of Southern Italy highlighting the location of the islands included in this study. (C) Map of the Tremiti Archipelago. (D) Map of the Pontine Archipelago. Satellite images accessed from Google Earth, 2025 Maxar Technologies.

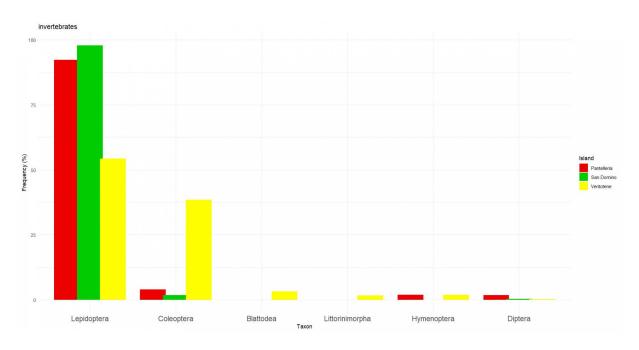


Figure 2. Frequency of the most represented invertebrate ASVs found in the three studied islands. Only ASVs with a frequency > 1% in at least one island are shown in the graph. Each island is represented by a bar of different colour.

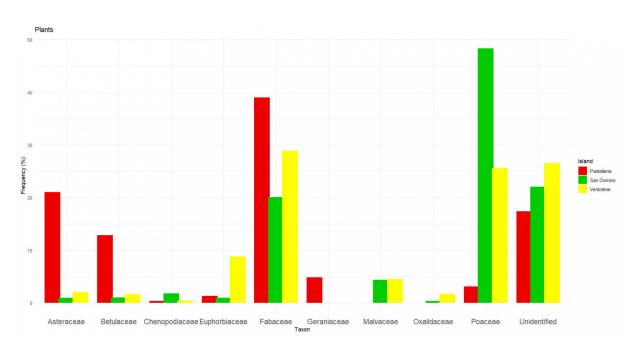


Figure 3. Frequency of the most prevalent plant ASVs identified across the three study islands. Only ASVs occurring at a frequency above 1% in at least one island are displayed. Different islands are shown with uniquely colored bars.

Manuscript body

Download source file (77.66 kB)

Tables

Download source file (17.09 kB)

Tables

Figures

Figure 1 - Download source file (1.48 MB)

Figure 1. (A) Map of the Mediterranean basin showing the location of the study area. (B) Map of Southern Italy highlighting the location of the islands included in this study. (C) Map of the Tremiti Archipelago. (D) Map of the Pontine Archipelago. Satellite images accessed from Google Earth, 2025 Maxar Technologies.

Figure 2 - Download source file (18.79 kB)

Figure 2. Frequency of the most represented invertebrate ASVs found in the three studied islands. Only ASVs with a frequency > 1% in at least one island are shown in the graph. Each island is represented by a bar of different colour.

Figure 3 - Download source file (24.39 kB)

Figure 3. Frequency of the most prevalent plant ASVs identified across the three study islands. Only ASVs occurring at a frequency above 1% in at least one island are displayed. Different islands are shown with uniquely colored bars.

Supplementary Online Material

File 1 - Download source file (10.13 kB)

Samples List

File 2 - Download source file (23.54 kB)

Supplementary Materials

