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one year, we evaluated the environmental use and daily activity patterns of two dominant mammalian 
predators: the Pampas gray fox (Lycalopex gymnocercus) and the Geoffroy's cat (Leopardus 
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same time, the cat did not exhibit a clear activity pattern, being potentially active at any time of the 
day. The ecological flexibility may explain why they were not significantly affected by habitat changes 
in the studied area. Additionally, the remaining patches of native habitat in the region may help 
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 12 

Abstract 13 

The replacement of grasslands with monospecific forests of Australian acacia (Acacia melanoxylon) has led to 14 

significant changes in habitat structure across the landscapes of Buenos Aires, Argentina, particularly in the 15 

Tandilia Mountain System. Given that this invasive tree drastically modifies plant architecture in these mountain 16 

grasslands, it is expected to affect the presence and habitat-use patterns of native fauna. We predicted a lower 17 

frequency of native carnivorous mammals in areas invaded by exotic acacia compared to native grasslands/scrub 18 

environments. To test this prediction, mammal presence was assessed using camera traps (photo-trapping) in the 19 

Paititi Private Natural Reserve, located within the Tandilia Mountain System. Throughout four seasonal samplings 20 

spanning one year, we evaluated the environmental use and daily activity patterns of two dominant mammalian 21 

predators: the Pampas gray fox (Lycalopex gymnocercus) and the Geoffroy's cat (Leopardus geoffroyi). While 22 

both species showed preferences towards areas with higher vegetation cover, no preferences were observed 23 

regarding the occupation of grassland/scrub environments compared to acacia forests. Regarding activity patterns, 24 

the fox was found to be more crepuscular/nocturnal. At the same time, the cat did not exhibit a clear activity 25 

pattern, being potentially active at any time of the day. The ecological flexibility may explain why they were not 26 

significantly affected by habitat changes in the studied area. Additionally, the remaining patches of native habitat 27 

in the region may help mitigate the effects of anthropogenic impact. 28 

Keywords: Mammals, grassland ecosystems, invasive species management, carnivore ecology, camera-trapping, 29 

biodiversity monitoring 30 
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2 

Introduction 32 

Biological invasions constitute one of the main global environmental issues due to their profound impact 33 

on ecosystems (Vitousek et al., 1996). Some invasive species have altered ecosystems by modifying their 34 

ecological characteristics in an unprecedented way, leading to environmental deterioration and biodiversity loss 35 

(Charles & Dukes, 2007; Isbell et al., 2023).  36 

Grasslands are one of the most widespread vegetation types on the planet (Bilenca & Miñarro, 2004). 37 

Their high soil productivity has made them a target for intense agricultural activity, leading to their replacement or 38 

degradation over recent decades. Consequently, the remaining grassland patches face increasing threats from 39 

invasive species, further compounding conservation challenges (Zalba & Villamil, 2002). 40 

In Argentina, the Pampas region consists of a vast plain originally dominated by tall grasslands, where the 41 

introduction and rapid proliferation of cattle and horses led to a replacement of the tall grasses' physiognomy with 42 

short grasses. Pampas’ landscape is formed by parcels with different land uses, with large areas being utilized for 43 

crops and grazing, rural settlements, and towns (Baldi et al., 2006). However, the proportion of land that can be 44 

dedicated to crops or grazing fields depends on soil quality or suitability, so areas unsuitable for these purposes, 45 

such as rocky, saline, or sandy soils, remain dominated by native grasslands (Viglizzo et al., 2001; Baldi et al., 46 

2006). 47 

Within the Pampas region, the Tandilia Mountain System has remained a biodiversity refuge for flora and 48 

fauna and a provider of ecosystem services, contrasting with the surrounding grassland areas, as its rocky soils 49 

prevent agricultural expansion (Vignolio, 2021). However, these environments are also being progressively 50 

degraded by the spread of invasive plant species, such as blackberry (Rubus ulmifolius Schott) and Australian 51 

blackwood (Acacia melanoxylon R. Br.), among others, which are rapidly colonizing increasingly larger areas of 52 

the hill range (Zaninovich et al., 2023). Due to its varied and effective proliferation strategies, the Australian 53 

acacia is an invasive tree particularly challenging to eradicate. This species releases allelopathic compounds that 54 

inhibit the growth of neighboring plants; accumulates biomass in the soil, acting as a physical barrier to seedling 55 

establishment; and competitively excludes native species through both aboveground and belowground competition 56 

for light and other resources. As a result, it frequently establishes near-monocultures, overwhelmingly dominating 57 

the landscape. Notably, the root systems of A. melanoxylon can access water and nutrients from deeper soil layers 58 

than those typically available to grassland species (Le Maitre et al., 2011; Souza-Alonso et al., 2017). This 59 

replacement of native flora by acacias is known to cause negative effects on biodiversity, fire regimes, water use, 60 

and soil properties. Acacia trees currently exhibit extensive expansion in all mountainous sectors of the Tandilia 61 

System (Vieites-Blanco & Prieto, 2020). 62 
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In addition to the massive extinction of large mammals since the late Pleistocene (Barnosky & Lindsey, 63 

2010), changes produced by human activity in the last 100 years have led to the extinction of all or a large part of 64 

the remaining medium and large mammals of the Pampa´s grasslands ecoregion, such as the jaguar (Panthera 65 

onca) and the pampas deer (Ozoteceros bezoarticus), and have changed the distribution and abundance of many 66 

other species (Azpiroz et al., 2012). Among these mammals, carnivores are commonly used as focal species in 67 

conservation initiatives (Linnell et al., 2000; Sanderson et al., 2002). This is because they can exert important top-68 

down ecological effects, influencing both community structure and ecosystem function. Predators play a 69 

fundamental role in controlling herbivore populations, as well as in controlling their feeding behaviors, indirectly 70 

allowing greater plant species abundance due to reduced herbivory pressure (Dirzo et al., 2014; Atkins et al., 71 

2019). These characteristics make them well-suited as biodiversity indicators, guiding conservation actions based 72 

on their presence beyond their ecosystem benefits (Natsukawa & Sergio, 2022). Moreover, carnivore species are 73 

often used as indicators of an area’s conservation status due to the substantial impacts that food limitation and 74 

habitat fragmentation can have on their populations (Sergio et al., 2008). 75 

Numerous studies have examined the composition (e.g., Caruso et al., 2016) and the trophic 76 

characteristics of species within the carnivore assemblages in the Pampas region (e.g., Canepuccia et al. 2008; 77 

Farías and Kittlein, 2008; Guidobono et al., 2016). However, little is known about how replacing native grasslands 78 

with invasive trees, such as blackwood acacias, affects the spatial and temporal composition of carnivore 79 

assemblages. The Pampas gray fox (Lycalopex gymnocercus) and Geoffroy's cat (Leopardus geoffroyi) are two of 80 

the most commonly recorded carnivores in the Pampean grassland ecoregion, with the former exhibiting more 81 

generalist feeding habits (Manfredi et al., 2004; Canepuccia et al., 2008; Luengos et al., 2012). These species are 82 

primarily crepuscular and nocturnal, making them elusive and difficult to spot (Silva-Rodríguez et al., 2025). In 83 

this landscape, native mammals coexist with introduced species with significant potential for ecological 84 

disruption, such as the feral pig (Sus scrofa), and free-ranging dog (Canis lupus familiaris), both of which pose 85 

serious threats to native species through predation, competition, or habitat degradation (Herrero et al., 2006; 86 

Barrios-García & Ballari, 2012; Zanón‐Martínez & Lessa, 2014; Isbell et al., 2023). The feral pig may compete for 87 

food (e.g., small prey, carrion, fruits) and habitat with native carnivores (Barrios-García & Ballari, 2012). 88 

Furthermore, feral pigs, through their rooting and wallowing behavior, can alter vegetation structure, potentially 89 

affecting the availability of shelter for native mammals. These environmental modifications may trigger bottom-up 90 

effects in the trophic web, indirectly impacting predators such as Geoffroy’s cat and Pampas gray fox (see Herrero 91 

et al., 2006).   92 
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This study aims to describe the assemblage composition of carnivore species in a small protected area of 93 

the Tandilia Mountain System (Paititi Private Natural Reserve, PPNR) and to assess the spatial and temporal 94 

variation in their activity using camera trapping. To achieve this, we compared areas characterized by native 95 

habitats with those invaded by A. melanoxylon. Our focus was on the reserve's two most representative and 96 

prevalent species: the Pampas gray fox and Geoffroy’s cat. 97 

 98 

Materials and Methods 99 

Study area 100 

This study was conducted in the PPNR (37°55’25’’S, 57°49’12’’W; Fig. 1), which is a member of the 101 

Argentine Network of Private Nature Reserves (https://reservasprivadas.org.ar/). The Reserve is located in the 102 

southeastern sector of the Tandilia mountain system, Buenos Aires Province, Argentina, and is considered a relic 103 

of native grassland. The PPNR features low, isolated hills (Sierra de los Padres) reaching elevations of up to 500 m 104 

a.s.l. The landscape includes broad ridges and valleys, with vegetation structured along distinct geomorphic zones: 105 

gentle lower slopes dominated by shrubs, grasses, and geophytes; steeper, rocky hillsides with sparse cover; and 106 

relatively flat summits characterized by grasslands over loess soils. The climate is temperate, with an average 107 

annual rainfall of ~850 mm, and summers are often characterized by water deficits, indicating seasonal moisture 108 

limitations (Echeverría et al., 2017). 109 

The reserve dedicates 220 hectares to the conservation of the hill range's native habitats (grasslands and 110 

shrublands). Due to its high diversity, endemism, and archaeological remains, PPNR has been designated a 111 

Valuable Grassland Area (Bilenca & Miñarro, 2004). Additionally, it is recognized as an area of interest for 112 

conservation and ecotourism and is part of the Alianza de Pastizal (an alliance between livestock and agricultural 113 

producers and conservationists, https://www.avesargentinas.org.ar/alianza-del-pastizal).  114 

The vegetation in the PPNR is characterized by the predominance of Paspalum quadrifarium and P. 115 

exaltatum at the base of the hills, forming a distinctive tall grassland environment (Bilenca & Miñarro, 2004; 116 

Arcusa, 2016). On the slopes, shrublands dominated by Baccharis articulata, B. coridifolia, B. dracunculifolia, 117 

Buddleja thyrsoides, and Dodonaea viscosa prevail, alongside characteristic thickets of Colletia paradoxa. At the 118 

summit, large areas are dominated by ferns of the genera Rumohra, Adiantum, and Blechnum, with rocks covered 119 

in mosses and lichens. The invaded area is dominated by Acacia melanoxylon, which forms forest stands with a 120 

closed canopy, open understory, and a ground layer largely composed of litter (Arcusa, 2016). Across the Tandilia 121 

Hill System, this species is a widespread invader (Arcusa, 2016) and currently occupies approximately 18% of the 122 

PPNR (Zaninovich et al., 2023). Acacia patches vary in size and occur interspersed with extensive native 123 
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grasslands and shrublands. Beyond the foothills, the surrounding plains are dominated by grasslands and agro-124 

pastoral landscapes, whereas the higher elevations of the hills remain less affected by acacia encroachment, 125 

supporting a distinctive high-altitude grassland–shrubland ecosystem. 126 

 127 

Sampling design  128 

We used camera traps to register the daily activity patterns of mammals in the study area (see Wearn & 129 

Glover-Kapfer, 2019; Appendix 1). Camera traps were active over an average of 15 days in each of the four 130 

seasons: winter, spring, summer, and autumn (between June 2022 and May 2023; see Appendix 2). The cameras 131 

operated continuously 24 hours a day.  132 

Sixteen camera traps were deployed, with eight cameras placed in each of two distinct environments (i.e., 133 

acacia forest vs. grasslands and shrublands). Each camera was set to capture three photos per detection event (in 134 

some cases, 10- or 20-second videos were recorded), with a 15-second minimum interval between each event, and 135 

utilizing either normal or low PIR sensitivity.  136 

Given the difficulty of individual identification, we minimized pseudoreplication by defining independent 137 

detections as those of the same species recorded at the same camera station at least 60 minutes apart. Similar 138 

independence thresholds have been widely adopted in camera trap studies on mammals, including those by 139 

O’Brien et al. (2003), Di Bitetti et al. (2006), and Wang and Macdonald (2009), who applied intervals of 30 to 60 140 

minutes to define independent capture events. These criteria ensure that each event is more likely to represent a 141 

distinct visit or individual, improving data reliability and comparability across studies. Camera traps within the 142 

same environmental type were placed at a minimum distance of 100 meters apart. This distance was determined 143 

based on the environment patch sizes within the reserve (grassland/scrub or acacia forest), ensuring that both were 144 

equally represented. Although the home range of most carnivorous mammals typically exceeds this distance, this 145 

spacing is appropriate for assessing relative environmental use and daily activity patterns, in fragmented or 146 

heterogeneous landscapes (e.g., Tobler et al., 2008; O’Brien et al., 2003; Rovero et al., 2013; Sollmann et al., 147 

2013).  Data collection was conducted in two distinct environments: (a) grassland/shrubland and (b) acacia forest, 148 

which were defined according to the following criteria: 149 

Native grassland/shrubland: mixed composition with grassland/shrubland characterized by the predominance of 150 

Baccharis dracunculifolia ssp. tandilensis and Paspalum quadrifarium. These species are distributed from the 151 

foothills to the higher elevations. 152 
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Acacia forest: areas where the exotic Australian acacia (A. melanoxylon) is progressively replacing native 153 

grasslands. They have a uniform distribution across various altitudinal zones of the mountain range, from the 154 

foothills to the higher elevations of the reserve. 155 

For the placement of the camera traps, locations frequented by wildlife and sites where the vegetation 156 

provided some levels of protection were chosen, minimizing contact with livestock or human activity (Online 157 

Resource 1). The sites were baited with a minimal dose of canned tuna during the first day of camera trap 158 

placement. We manually check all camera records, taking into account the recommendations of Silva-Rodríguez et 159 

al. (2025) regarding current quality control practices (see also Apps et al., 2018). 160 

We identified two spatial scales of analysis to investigate the relationship between carnivore presence and 161 

activity. The first level of comparison was conducted between the two major environmental units in the reserve: 162 

grassland/shrubland (native habitat) vs. Australian acacia forest (exotic habitat). The second level encompassed a 163 

broader spatial scale, capturing the environmental heterogeneity resulting from hill topography and the patchy 164 

distribution of vegetation. Consequently, an additional variable was quantified to describe the level of landscape 165 

heterogeneity at each point corresponding to the location of each camera trap. For this purpose, and to reflect 166 

spatial variation in environment composition, two circles of radius 20 ± 0.5 m and 50 ± 0.5 m were determined 167 

(using the camera location as the center) based on the size and distribution of the environments in the reserve (Fig. 168 

2). These distances were selected to capture both the immediate surroundings of the camera and a broader 169 

landscape context. The variables considered were the percent coverage of 1) grassland, 2) shrubs, 3) acacia trees, 170 

4) exposed rock, and 5) open areas within the area of the circle, using Google Earth satellite images as a reference. 171 

The latter variable refers to zones of short grasses or, in some cases, areas with crops, characterized by having 172 

lower vegetation coverage compared to grassland/shrubland areas and acacia woodland. The circle measurements 173 

were arbitrarily defined, with the 20 m radius scale intended to capture the vegetation characteristics closest to the 174 

camera, while the 50 m radius scale was designed to reflect the broader landscape characteristics of the area 175 

surrounding the camera. 176 

 177 

Data analyses 178 

Generalized linear mixed models (GLMMs) with a Poisson distribution and an offset (recording hours) 179 

were initially fitted to compare the activity patterns of all recorded species. However, due to overdispersion, we 180 

used generalized linear mixed models (GLMMs) with a negative binomial distribution, incorporating the same 181 

offset and a log link function. The number of photographic capture events of individuals via camera trapping 182 

served as the response variable, with species (Pampas gray fox, Geoffroy’s cat, skunk, and lesser grison) as the 183 
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explanatory variable. The location in geographic coordinates of each camera was treated as a random effect, as it 184 

was replicated across different seasons. This approach was implemented using the glmer function from the lme4 185 

package (Bates et al., 2015). However, after observing that the random variable did not contribute to the 186 

variability, it was removed from the model based on a likelihood ratio test comparison with GLMs. Subsequently, 187 

generalized linear models (GLMs) with a negative binomial distribution, incorporating an offset (recording hours) 188 

and a log link function, were employed using the glm.nb function from the MASS package (Venables & Ripley, 189 

2002). Differences among the levels of the fixed factor were assessed through multiple-comparison tests (Tukey 190 

Contrasts) using the multcomp package (Hothorn et al., 2008).   191 

Given the proximity among camera trap stations, we tested for spatial autocorrelation in the residuals of 192 

the GLMs using Moran’s I (p > 0.05), implemented with the spdep package (Pebesma & Bivand, 2023). We used 193 

camera trap coordinates to define spatial neighbors within a biologically meaningful threshold based on the 194 

estimated home range size of each species (Lucherini & Luengos Vidal, 2008; Manfredi et al., 2012). No 195 

significant spatial autocorrelation was detected, indicating that the assumption of independence among stations 196 

was met.  197 

To analyze the effect of environmental variables on the activity patterns of the Pampas gray fox and 198 

Geoffroy’s cat, the same approach was applied. Initially, the correlation between environmental variables was 199 

assessed using Spearman's correlation test with the cor.test function, excluding variables that showed significant 200 

correlation. We considered not only the p-value but also the correlation coefficient (r), ensuring that it remained 201 

below 0.5, a threshold commonly used as a general reference in similar analyses. The number of photographic 202 

capture events, captured via camera trapping, was used as the response variable, while the explanatory variables 203 

included season (autumn, spring, and summer) and environmental percent cover (grassland, shrubs, acacia trees, 204 

exposed rock, and open areas) within two predetermined ratios of 20 and 50 meters around each camera trap. This 205 

methodology was also repeated to test the daily activity patterns of the Pampas gray fox and Geoffroy’s cat, with 206 

the response variable remaining as the number of photographic capture events. The explanatory variable, in this 207 

case, was the activity period (sunrise, day, sunset, and night), determined based on sunrise and sunset times 208 

provided by the Naval Hydrographic Service for the city of Mar del Plata on the sampling start and end dates for 209 

each season, which correspond to civil time (also known as civil twilight times; see Appendix 2). All four seasons 210 

were included in this analysis. For both the analyses of environmental variables influencing activity patterns and 211 

the assessment of daily activity patterns, only the Pampas gray fox and Geoffroy’s cat were examined, as these 212 

were the only species with a sufficient sample size for meaningful comparisons. The fitness of all models was 213 

checked using DHARMa diagnostic plots employing the DHARMa package (Hartig, 2022). To identify the most 214 
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parsimonious model, we applied a stepwise backward model selection procedure to eliminate non-significant main 215 

effects until only significant terms remained. Model simplification was performed by sequentially comparing 216 

nested models using likelihood ratio tests (ANOVA). All tests were two-tailed with a significance level of α = 217 

0.05. The results were visualized using the R package visreg (Breheny & Burchett, 2017). Statistical analysis of 218 

the data was performed using the R software, Version 4. 3. 1 (R Core Team, 2023). 219 

 220 

Results 221 

Carnivore Assemblage  222 

Four carnivore species present in our records were photographed in both grassland and acacia forests: 223 

Pampas gray fox (Lycalopex gymnocercus), the Geoffroy’s cat (Leopardus geoffroyi), skunk (Conepatus chinga), 224 

and lesser grison (Galictis cuja). Numerous native non-target mammal species (e.g., Oxymycterus rufus, Didelphis 225 

albiventris, Dasypus hybridus, see details in Online Resource 2) were also recorded. Other non-native species 226 

observed in our records, though in low numbers, included hares (Lepus europaeus), axis deer (Axis axis), wild 227 

boar (Sus scrofa), rats (Rattus rattus), and domestic dogs (Canis lupus familiaris).  228 

A total of 582 photographic shots of the Pampas gray fox (251 in grassland/shrubland, 331 in acacia 229 

forest), 73 of the Geoffroy’s cat (43 in grassland/shrubland, 30 in acacia woodland), 15 of skunks (3 in 230 

grassland/shrubland, 12 in acacia woodland), and 14 of lesser grison (11 in grassland/shrubland, 3 in acacia 231 

woodland) belonging to the carnivore assemblage were recorded (Fig. 3). Significant differences were observed 232 

between species (X2 = 121.67, p < 0.05), with the daily records of gray fox being higher than those of the 233 

Geoffroy’s cat, lesser grison, and skunk (β = 2.0777 ± 0.2579, z = 8.058, p < 0.05; β = 2.8885 ± 0.3322, z = 8.694, 234 

p < 0.05; β = 3.8032 ± 0.3602, z = 10.560, p < 0.05). Additionally, the records of the Geoffroy’s cat were higher 235 

than those of the skunk (β = -1.7255 ± 0.3764, z = -4.584, p < 0.05). 236 

Although no statistically significant differences were found in the abundance of lesser grisons relative to 237 

skunks or Geoffroy’s cats (β = 0.9148 ± 0.4308, z = -2.123, p > 0.05; β = -0.8108 ± 0.3498, z = -2.318, p > 0.05), 238 

there were more total records of the Geoffroy’s cat compared to grisons or skunks (Fig. 3).  239 

 240 

Relationship between Pampas gray fox and Geoffroy's cat with environmental variables 241 

Pampas gray fox  242 

A significant effect on gray fox observation frequency (Table 1) was observed at the 20 m radius scale 243 

concerning the variables “season”, “shrub percentage”, and “grass percentage”. The occurrence frequency was 244 

higher in the spring season (β = 0.836 ± 0.15, z = 5.557, p < 0.05). Moreover, analyses of environmental variables 245 
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showed a positive relationship between detection rate and shrub cover (β = 0.0077 ± 0.0019, z = 4.137, p < 0.05), 246 

while detection frequency decreased as grass cover increased (β = -0.0107 ± 0.0028, z = -3.860, p < 0.05) (Fig. 247 

4A, B; see also Appendix 3).  248 

The variables “season” and “open areas” affected the observation frequency of Pampas gray foxes at the 249 

50 m scale (Table 1). In this case, a higher detection rate of gray foxes was observed in spring compared to 250 

autumn (β = 0.7878 ± 0.1815, z = 4.341, p < 0.05) and summer (β = -0.9286 ± 0.2206, z = -4.210, p < 0.05), as 251 

well as a higher detection rate with increased coverage of open areas (β = 0.0252 ± 0.0096, z = 2.621, p < 0.05) 252 

(Fig. 4C). 253 

 254 

Geoffroy's cat  255 

Considering the area defined by a 20m radius scale, no variable explained the occurrence frequency of 256 

the Geoffroy’cat. The best fit was presented by the null model (Table 2). However, at the 50 m scale, higher shrub 257 

coverage resulted in more Geoffroy’scat’s records (β = 0.029 ± 0.012, z = 2.377, p < 0.05) (Fig. 5A), and there 258 

were also more records with lower rock coverage (β = -0.0915 ± 0.0459, z = -1.994, p < 0.05) (Fig. 5B; Table 2; ; 259 

see also Appendix 3). 260 

 261 

Activity patterns of Gray Fox and Geoffroy's cat  262 

In the combined model, where the frequencies of gray fox and Geoffroy’s cat were evaluated within the 263 

same model, a higher occurrence frequency of fox (β = 2.0933 ± 0.1475, z = 14.19, p < 0.05; Fig. 6) than of cat 264 

was found. Time of day had a significant effect: abundances were higher during the day (β = 1.298 ± 0.336, z = 265 

3.86, p < 0.001) and at night (β = 1.966 ± 0.328, z = 5.99, p < 0.001) compared to sunrise, while sunset did not 266 

differ significantly from sunrise (β = 0.301 ± 0.358, z = 0.84, p = 0.401). The effect of environment (grassland vs. 267 

reference habitat) was not significant (β = 0.258 ± 0.224, z = 1.15, p = 0.249). No differences between species 268 

were observed in the use of native grassland/shrubland environments compared to acacia forests.  269 

No differences were observed in Geoffroy's cat among moments of the day (daily activity). However, a 270 

trend towards a higher number of records at sunrise was observed (Fig. 6A). However, differences in daily activity 271 

patterns for the Pampas gray fox (Table 3) were observed. For this species, the day showed fewer observations or 272 

records of individuals compared to sunrise (β = -0.7908 ± 0.1953, z = -4.048, p < 0.05), sunset (β = -1.1085 ± 273 

0.1855, z = -5.975, p < 0.05), and night (β = -1.1495 ± 0.16635, z = 6.910, p < 0.05) (Fig. 6B).  274 

Significant differences between seasons were found for the Geoffroy’s cat (Table 3), with higher record 275 

rate in winter than in autumn (β = 1.9496 ± 0.5700, z = 3.420, p < 0.05) and then in summer (β = 2.1504 ± 0.8236, 276 
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z = 2.611, p < 0.05), and higher in spring than in autumn (β = 1.4866 ± 0.4672, z = 3.182, p < 0.05) (Fig. 7A). No 277 

seasonal activity differences were observed for the Pampas gray fox (Fig. 7B; Appendix 3). 278 

 279 

Discussion 280 

During the sampling period, we recorded four of the five native carnivore species known to inhabit the 281 

region: Geoffroy's cat, Pampas gray fox, lesser grison (Galictis cuja), and skunk (Conepatus chinga) (see 282 

Aranguren et al., 2023). The cougar (Puma concolor) was the only carnivore species not observed, despite its 283 

confirmed presence in the area, as indicated by occasional sightings reported by residents (E. González Zugasti, 284 

pers. comm.). Additionally, we detected the presence of the white-eared opossum (Didelphis albiventris) and the 285 

southern long-nosed armadillo (Dasypus hybridus).  286 

Among the carnivores observed using camera traps, the Geoffroy's cat and the Pampas gray fox had the 287 

highest number of recorded sightings. Differences in habitat use and daily activity patterns were observed between 288 

the latter species. Contrary to our prediction, no differences were found in habitat use when native 289 

grasslands/shrubs were compared with areas invaded by acacia forests. The Pampas gray fox exhibited a higher 290 

frequency of occurrence in the studied environments than the Geoffroy's cat. The Pampas gray fox exhibited 291 

predominantly crepuscular/nocturnal habits, while Geoffroy's cat did not show a distinct daily activity pattern.  292 

Both species appear to be abundant in the study area. Overall, higher activity levels were recorded for 293 

both predators during winter and spring. However, although a trend suggested increased Pampa’s fox activity in 294 

spring, no statistically significant differences were observed among the four seasons. Seasonal and daily variations 295 

in this species may be influenced by climatic factors or fluctuations in agricultural and livestock activities that 296 

characterize the region's landscape (Luengos Vidal, 2009). In contrast, comparing the four seasons for Geoffroy's 297 

cat revealed more records during winter and spring. This finding diverges from other studies in the Pampas region, 298 

which indicate that individuals of this species are primarily active during the summer months (Manfredi et al., 299 

2011). 300 

Habitat use by these species appears to respond to variations in the spatial arrangement of shrub/grassland 301 

coverage in the study area (see Online Resource 3). At a finer spatial scale, the presence of the Pampas gray fox 302 

was positively correlated with increased shrub coverage at the expense of native grasslands. However, at a larger 303 

spatial scale, it was associated with the availability of open areas. In contrast, Geoffroy's cat showed no 304 

association with environmental variables at the smallest scale; however, at a larger scale, its occurrence increased 305 

with greater shrub coverage and decreased with higher exposed rock coverage.  306 
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Most camera trap records in this study corresponded to the Pampas grey fox and Geoffroy's cat, with 307 

fewer events documented for smaller predators such as the skunk (Conepatus chinga) and the lesser grison 308 

(Galictis cuja). The low occurrence of these smaller species may be related to spatiotemporal segregation, 309 

resulting from their overlap with larger predators, which could negatively affect them (e.g., Caruso et al., 2016).  310 

Consistent with previous studies, the low number of grison detections in our survey likely reflects the species’ 311 

inherently low detectability. Camera traps often fail to detect and identify small-bodied species due to limitations 312 

related to body size and distance from the camera (Burton et al., 2015). Moreover, their reduced detection 313 

frequencies may also be influenced by rapid urbanization, habitat loss, and habitat modification associated with 314 

agricultural and livestock expansion, which increase sampling challenges for elusive species despite standardized 315 

sampling effort and methodology (Caravaggi et al., 2017). Certain carnivore species, such as Puma concolor, 316 

either exhibit greater elusiveness to camera trapping or have inherently lower relative abundances. In contrast, 317 

other species, such as Herpailurus yagouaroundi and Leopardus colocolo, are nearly absent from the Pampean 318 

region (Luengos Vidal et al., 2019; Pereira et al., 2019; Lucherini et al., 2019; Bisceglia et al., 2019; De Angelo et 319 

al., 2019; Castillo & Schiaffini, 2019; Fracassi et al., 2019; Aprile et al., 2019).  320 

The presence of exotic carnivores, such as free-roaming domestic dogs (Canis lupus familiaris), also 321 

plays a role (Aprile et al., 2019). Dogs without movement restrictions in natural areas are known to significantly 322 

affect native carnivore populations globally (Hughes & Macdonald, 2013; Doherty et al., 2017; Mitchell & Banks, 323 

2005), including in protected areas of Argentina (Zamora-Nasca & Lambertucci, 2023). Although both the skunk 324 

and the lesser grison are generalist species often found in agroecosystems (Castillo et al., 2014; Donadio et al., 325 

2004; Donadio & Buskirk, 2006), they tend to be more abundant in native grasslands farther from human 326 

settlements, roads, and other anthropogenic influences (e.g., Caruso et al., 2016). 327 

 328 

Habitat use by gray fox and Geoffroy's cat 329 

Both the Pampas gray fox and the Geoffroy's cat have a wide distribution range in Argentina, Bolivia, 330 

Brazil, Paraguay, and Uruguay. These species are considered relatively common carnivores throughout their 331 

distribution area (Pereira et al., 2015; Lucherini, 2016). More generalist carnivores appear to be more tolerant to 332 

landscape changes and may even benefit from the development of agricultural and livestock activities (Canepuccia 333 

et al. 2008; Caruso et al., 2016; Šálek et al. 2010). They may benefit from and expand their distribution range due 334 

to the increased availability and diversity of prey associated with human activities (MacDonald, 1983; Luengos 335 

Vidal, 2009, 2012). 336 
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Particularly, the Pampas gray fox is a generalist South American canid that adapts very well to the 337 

human-dominated landscape of the Argentine pampas (Luengos Vidal et al., 2012). This species exhibits 338 

considerable ecological flexibility in its diet (Farías and Kittlein, 2008), and daily activity patterns (Luengos 339 

Vidal, 2009; Lucherini & Luengos Vidal, 2008; Di Bitetti et al., 2009), and also occupies a wide range of 340 

environments in open and transitional areas, including native grasslands and marshes (García & Kittlein, 2005; 341 

Canepuccia et al., 2008), and is also commonly found in agricultural and livestock environments within the 342 

Pampas region (Lucherini & Luengos Vidal, 2008). Luengos Vidal (2009) recorded that this species selects areas 343 

with denser vegetation coverage, either due to more favorable conditions or evasive behavior, such as avoiding 344 

human presence. In the Pampas region, patches with greater vegetation coverage throughout the year may serve as 345 

a crucial resource for the survival of Pampas gray fox populations. However, both our results and those of 346 

Luengos Vidal (2009) agree that vegetation cover is significant at smaller spatial scales, while at larger geographic 347 

scales, open environments are more important for the presence of the Pampas gray fox. Although it was expected 348 

that this species would primarily utilize native grassland/shrubland environments, as found in other studies (Di 349 

Bitetti et al., 2009), the results of this study did not reveal preferences regarding the type of habitat used 350 

(grassland/shrubland vs. Australian acacia forests). One possible explanation for this could be the absence of 351 

similarly sized competitors, as the Pampas gray fox (4–8 kg) and the Geoffroy's cat (3–5 kg) are among the few 352 

carnivores within this weight range in the Tandilia Mountain System, where the puma (Puma concolor) is rarely 353 

observed. Another possible explanation could be the spatial scale of analysis used in this study. Considering a 354 

distance radius of 50 meters from the camera trap, open areas (with short grasses or near crops) largely accounted 355 

for the presence of this species. Accordingly, the Pampas gray fox appears to select open landscapes where 356 

patches of dense vegetation are nonetheless available as refugia, which would explain the contrasting responses 357 

observed at different spatial scales. 358 

Unlike the Pampas gray fox, the Geoffroy's cat exhibits a more specialized diet that is almost exclusively 359 

carnivorous, making it less capable of adapting to anthropogenic disturbances and changes in prey abundance 360 

(Canepuccia et al., 2008; Caruso et al., 2016). However, like most predators with a wide geographic distribution, 361 

its diet varies depending on the environment and the availability of prey, ranging from small rodents to large 362 

waterbirds (e.g., Bisceglia et al., 2008; Canepuccia et al., 2008; Manfredi et al., 2004; Guidobono et al., 2016). 363 

This dietary flexibility may promote a certain degree of ecological plasticity, enabling the Geoffroy's cat to occupy 364 

a wide variety of habitats, including scrublands, dry forests, marshes, and grasslands (Manfredi et al., 2006; 365 

Canepuccia et al., 2007, 2008; Pereira et al., 2010; Cuyckens et al., 2016). Therefore, this species may also exhibit 366 
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a certain degree of tolerance to anthropogenic disturbances, allowing it to inhabit agricultural and livestock areas 367 

(Cuellar et al., 2006; Castillo et al., 2008). 368 

In this regard, habitat selection by Geoffroy’s cat can vary significantly, as studies suggest that this 369 

species prefers environments with low levels of anthropogenic disturbance (Manfredi et al., 2006; Cuellar et al., 370 

2006). Conversely, other studies indicate a preference for forest habitats dominated by exotic species over native 371 

grasslands or protected areas (Manfredi et al., 2012; Caruso et al., 2016). Our results indicate that vegetation cover 372 

is a highly relevant factor concerning space use in this species, likely facilitating prey stalking and providing 373 

refuge (e.g., Canepuccia et al., 2007). Although this predator also utilizes open areas as movement corridors 374 

(Cuellar et al., 2006; Manfredi et al., 2006), an increase in coverage of bare rock coverage may limit opportunities 375 

for concealment or shelter. Additionally, forests may provide useful structural features for Geoffroy's cat, given its 376 

ability to climb trees, for hunting and shelter (Manfredi et al. 2006, see Online Resource 4).  377 

As previously noted, this species has a wide latitudinal distribution and exhibits remarkable adaptability 378 

to diverse habitats, including grasslands, shrublands, and forests (e.g., Cuyckens et al., 2016). Although we 379 

initially expected that the lack of understory vegetation in Acacia forests would negatively affect Geoffroy’s cat, 380 

this environment appears to provide suitable habitat. These findings highlight that species’ responses to habitat 381 

degradation and to the replacement of native vegetation by exotic species may depend more on their ecological 382 

traits than on the native or exotic status of the vegetation. 383 

Although the focal species exhibit a broad home range (with the Pampas gray fox having a home range of 384 

2.13 ± 1.37 km², Luengos Vidal, 2009, and the Geoffroy’s cat ranging between 2.48 and 3.42 km², Manfredi et al., 385 

2012), the objective of this study was to detect differential habitat use and activity patterns at a small geographical 386 

scale. Thus, our study was developed in a relatively small protected area (220 ha) surrounded by an agriculture-387 

dominated landscape matrix. The limitations of working within a relatively small area when studying species with 388 

large home ranges are challenges faced by reserve managers; initiatives like ours can provide valuable insights for 389 

similar small reserves with patchy habitats. One of the problems of protected areas at a global level is that they are 390 

mostly small in size (Schauman et al., 2023). Generating insights into the effects of invasive species on key 391 

biodiversity components, such as carnivores, is crucial. Therefore, understanding how sensitive components like 392 

carnivores respond to the recurring issue of invasive species presents a fundamental challenge for conservation 393 

management in these protected areas. Geoffroy's cat individuals may occupy a specific home range for 4 to 5 394 

months before shifting territories. Therefore, a 12-month sampling period could provide information on different 395 

individuals, even though this study covered approximately 6 km in length. Contrary to our original predictions, 396 

neither the Pampas gray fox nor the Geoffroy's cat exhibited clear preferences for native grassland or shrubland 397 
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over Australian acacia forest; rather, both species were observed to traverse and utilize both types of habitats. 398 

These species may exhibit considerable ecological flexibility and, consequently, in many cases, they may be less 399 

affected by or even benefit from anthropogenic impacts (Luengos Vidal, 2009; Manfredi et al., 2006).  400 

This same impact likely explains why other carnivores, which are more sensitive to habitat changes, have 401 

been recorded much less frequently, even when using attractive baits. For instance, the occasional detections of the 402 

white-eared opossum (Didelphis albiventris) and the southern long-nosed armadillo (Dasypus hybridus) may be 403 

related to their response to small bait. It is worth noting that the record rate of D. albiventris in natural settings 404 

tends to be much lower than in human-modified habitats (including urban and suburban areas), so the low 405 

detection rates observed here could be expected. Although the study encompassed areas of native grassland and 406 

shrubland, these habitats were relatively limited in extent within a highly fragmented landscape. Considering that 407 

the home ranges of most Carnivora species cover several kilometers, the proximity of populated areas, agricultural 408 

and livestock zones, and roads likely affects the spatial use and detection of all species inhabiting this region. 409 

 410 

Daily activity patterns in Pampas gray fox and Geoffroy's cat  411 

Unlike herbivores, the availability of food for carnivores follows a daily activity cycle that is linked to the 412 

cycles of their prey. Since capture efficiency varies with prey activity, those carnivores that can synchronize their 413 

foraging time with periods when their prey is most vulnerable will achieve greater success at a lower cost than 414 

those that forage randomly (Zielinski, 1988). In line with this, if prey species alter their activity patterns, the 415 

predators’ patterns may also change, which could explain differences in activity patterns observed across studies, 416 

seasons, and specific habitats. However, in animals with generalist diets, the ability to exploit prey with diverse 417 

activity patterns is expected to confer greater flexibility in their temporal activity. The Pampas fox exhibited a 418 

predominantly crepuscular and nocturnal activity pattern, consistent with findings from other studies in the 419 

Pampas region (Luengos Vidal, 2009; Lucherini & Luengos Vidal, 2008). However, in natural areas with less 420 

human disturbance, this species has been reported to display greater diurnal activity (Luengos Vidal, 2009; see 421 

also Di Bitetti et al., 2009). Given its behavioral plasticity, it is likely that in this area, the fox adjusts its daily 422 

activity patterns to balance resource acquisition (e.g., aligning with prey activity periods) and risk minimization 423 

(e.g., avoiding predation, agonistic interactions with dogs, or disturbances from human activities). 424 

Regarding the Geoffroy's cat, we did not observe a clear preference for specific times of the day. While 425 

previous studies suggest it is more active during twilight and nighttime (Castillo et al., 2008; Pereira et al., 2010; 426 

Cuellar et al., 2006), this species is also known to adapt its activity patterns in response to periods of lower prey 427 

availability, even shifting to hunting diurnal prey (e.g., Pereira et al., 2006; Pereira, 2010). Another reason that 428 
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could explain the shift away from nocturnal habits in this species may be the energetic demands of maintaining 429 

body temperature during the night in environments where temperatures significantly decrease. Thus, a reduction in 430 

nocturnal activity could also be attributed to increased energy conservation, competition, or the avoidance of 431 

predation (Zielinski, 1988).  432 

This daily pattern may also be linked to differences in habitat preferences and environmental segregation 433 

between the larger predators. The Pampas gray fox, which is associated with more open areas, tends to move 434 

during low-light hours to reduce its detectability. In contrast, the Geoffroy's cat, which is more commonly 435 

associated with dense foliage, is less likely to be detected, suggesting that its activity patterns may not be strongly 436 

influenced by light levels. 437 

Future studies should aim to incorporate seasonal variation and climatic factors in order to more 438 

comprehensively assess their effects on mammals’ activity patterns and habitat use, particularly considering how 439 

energetic and reproductive trade-offs may modulate these behavioral responses. 440 

 441 

Final considerations  442 

Protected areas are designated geographic spaces aimed at long-term nature conservation, representing a 443 

crucial strategy to mitigate the expansion and impact of human-induced stressors on biodiversity and ecosystem 444 

services (IUCN 1994). Globally, these areas face two main challenges: insufficient coverage across various 445 

biomes, small size and fragmentation of habitats complicating conservation efforts (Schauman et al., 2023). In 446 

such a context, this study provides the first insights into the activity patterns and habitat use of two representative 447 

carnivore species in the mountainous environments of the Pampas, impacted by the colonization of exotic A. 448 

melanoxylon, and the fragmentation of the native grasslands. The high frequency of mesocarnivores in the PPNR, 449 

particularly near agricultural fields and areas with regular human activity (e.g., agricultural workers, tourists, and 450 

sporadic poachers) highlights the importance of this Reserve in providing habitat for these native species. Frequent 451 

daytime recordings of these carnivores in camera traps suggest that the individuals are familiar with their 452 

surroundings. If human activity were perceived as a threat, increased nocturnal activity would likely be observed 453 

(e.g., see also Luengos Vidal, 2009; Pereira, 2010). Additionally, no preference was found for native 454 

grassland/shrubland environments over monospecific Australian acacia forests for either species. However, the 455 

lack of a clear response to acacia invasion should be approached cautiously, as this invasive species in PPNR is 456 

generally distributed in small patches surrounded by grasslands and shrublands. Thus, despite the habitat 457 

flexibility of these abundant carnivores, further evaluation is required to assess their responses to extensive areas 458 
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dominated by acacia in the absence of grasslands and shrublands. Such assessments will provide a clearer 459 

understanding of their potential impacts on native fauna diversity and habitat use. 460 
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Table 1. Results from the stepwise backward model selection procedure for Pampas gray fox data 798 

analysis within 20-meter and 50-meter radii. 799 

 800 

Response 

Variable 

Explanatory 

Variable 

Final Model  Elimination 

statistic 

 

Radius of 20 

meters 

     

Counts  X2 p-value X2 p-value 

 Season 29.35 4.2368e-07   

 Schrubs 15.15 9.9555e-05   

 Grass 13.99 0.00018   

Radius of 50 

meters 

     

Counts  X2 p-value X2 p-value 

 Season 19.68 5.33e-05   

 Acacia   0.74 0.39 

 Exposed rock   0.17 0.68 

 Open areas 6.48 0.01   
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Table 2. Results from the stepwise backward model selection procedure for Geoffroy’s cat data analysis 829 

within 20-meter and 50-meter radii. 830 

 831 

Response 

Variable 

Explanatory 

Variable 

Final Model  Elimination 

statistic 

 

Radius of 20 

meters 

     

Counts  X2 p-value X2 p-value 

 Season   3.38 0.18 

 Acacia   1.04 0.31 

 Exposed rock   2.00e-4 0.98 

Radius of 50 

meters  

     

Counts  X2 p-value X2 p-value 

 Season   4.82 0.09 

 Schrubs 4.14 0.035   

 Grass   0.196 0.66 

 Exposed rock 3.86 0.049   

 Open areas   0.77 0.38 
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Table 3. Results from the stepwise backward model selection procedure for the occurrence frequency of 857 

the Pampas gray fox and Geoffroy’s cat in the analysis of daily and seasonal activity patterns. 858 

 859 

Response 

Variable 

Explanatory 

Variable 

Final 

Model 

 Elimination 

statistic 

 

Combined 

model 

     

Counts  X2 p-value X2 p-value 

 Environment 35.61 3.47e-07   

 Species 45.09 1.88e-11   

 Moment of the day 34.87 1.30e-07   

Pampas gray fox       

Counts  X2 p-value X2 p-value 

 Environment   0.09 0.75 

 Season 49.16 0.04   

 Moment of the day 7.99 1.20E-10   

Geoffroy’s cat       

Counts  X2 p-value X2 p-value 

 Season 21.17 9.70E-05   

 Environment 5.06 0.02   

 Moment of the day   4.41 0.22 
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Figures captions 880 

Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos Aires Province, Argentina. 881 

The area outlined in white represents Estancia Paititi, while the black outline marks the boundaries of the Paititi 882 

Private Natural Reserve 883 

Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point corresponding to a 884 

camera trap in Sierra Grande (Paititi Private Natural Reserve) using a Google Earth image. The contrast is also 885 

illustrated between an Acacia melanoxylon–invaded environment and a natural grassland/shrubland characteristic 886 

of the serrano environment. Map scale = 100 m. 887 

Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging to the Order Carnivora, 888 

considering both environments combined. Plots show a confidence band (shaded area), prediction line (solid line), 889 

and partial residuals (points)  890 

Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate concerning shrub abundance 891 

with the 20 m radius scale. (B) displays the partial residuals of the Pampas gray fox detection rate concerning 892 

grass abundance with the 20 m radius scale. (C) displays the residuals of the Pampas gray fox detection rate 893 

concerning the coverage of open areas with a 50 m radius scale. Plots show the model-predicted values (solid 894 

line), confidence band (shaded area), and partial residuals (points) 895 

Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence concerning shrub abundance 896 

(A) and the percentage of exposed rock (B), both with the 50 m radius scale. Plots show the model-predicted 897 

values (solid line), confidence band (shaded area), and partial residuals (points) 898 

Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning the time of day. For 899 

Geoffroy's cat, there were no significant differences between the different times of day, while for the gray fox, 900 

fewer records were observed during the day. Plots show the model-predicted values (solid line), confidence band 901 

(shaded area), and partial residuals (points) 902 

Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's cat (B) by seasons. No 903 

differences were observed between seasons for the gray fox. For Geoffroy's cat, the highest number of 904 

observations was recorded in winter, followed by spring, with fewer observations in autumn and summer. Plots 905 

show the model-predicted values (solid line), confidence band (shaded area), and partial residuals (points) 906 
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Figure 1
Download TIFF (340.7 kB)

Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos Aires
Province, Argentina. The area outlined in white represents Estancia Paititi, while the black
outline marks the boundaries of the Paititi Private Natural Reserve
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Figure 2
Download TIF (1.71 MB)

Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point
corresponding to a camera trap in Sierra Grande (Paititi Private Natural Reserve) using a
Google Earth image. The contrast is also illustrated between an Acacia
melanoxylon–invaded environment and a natural grassland/shrubland characteristic of the
serrano environment. Map scale = 100 m.
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Figure 3
Download TIF (1.5 MB)

Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging to
the Order Carnivora, considering both environments combined. Plots show a confidence
band (shaded area), prediction line (solid line), and partial residuals (points)
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Figure 4
Download TIF (94.45 kB)

Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate concerning
shrub abundance with the 20 m radius scale. (B) displays the partial residuals of the Pampas
gray fox detection rate concerning grass abundance with the 20 m radius scale. (C) displays
the residuals of the Pampas gray fox detection rate concerning the coverage of open areas
with a 50 m radius scale. Plots show the model-predicted values (solid line), confidence band
(shaded area), and partial residuals (points)
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Figure 5
Download TIF (2.98 MB)

Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence concerning
shrub abundance (A) and the percentage of exposed rock (B), both with the 50 m radius
scale. Plots show the model-predicted values (solid line), confidence band (shaded area),
and partial residuals (points)
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Figure 6
Download TIF (2.92 MB)

Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning the
time of day. For Geoffroy's cat, there were no significant differences between the different
times of day, while for the gray fox, fewer records were observed during the day. Plots show
the model-predicted values (solid line), confidence band (shaded area), and partial residuals
(points)
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Figure 7
Download TIF (2.97 MB)

Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's cat
(B) by seasons. No differences were observed between seasons for the gray fox. For
Geoffroy's cat, the highest number of observations was recorded in winter, followed by
spring, with fewer observations in autumn and summer. Plots show the model-predicted
values (solid line), confidence band (shaded area), and partial residuals (points)
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Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos
Aires Province, Argentina. The area outlined in white represents Estancia Paititi, while the
black outline marks the boundaries of the Paititi Private Natural Reserve

Figure 2 - Download source file (1.71 MB)
Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point
corresponding to a camera trap in Sierra Grande (Paititi Private Natural Reserve) using a
Google Earth image. The contrast is also illustrated between an Acacia
melanoxylon–invaded environment and a natural grassland/shrubland characteristic of
the serrano environment. Map scale = 100 m.

Figure 3 - Download source file (1.5 MB)
Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging
to the Order Carnivora, considering both environments combined. Plots show a
confidence band (shaded area), prediction line (solid line), and partial residuals (points)

Figure 4 - Download source file (94.45 kB)
Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate
concerning shrub abundance with the 20 m radius scale. (B) displays the partial residuals
of the Pampas gray fox detection rate concerning grass abundance with the 20 m radius
scale. (C) displays the residuals of the Pampas gray fox detection rate concerning the
coverage of open areas with a 50 m radius scale. Plots show the model-predicted values
(solid line), confidence band (shaded area), and partial residuals (points)
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Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence
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50 m radius scale. Plots show the model-predicted values (solid line), confidence band
(shaded area), and partial residuals (points)
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Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning
the time of day. For Geoffroy's cat, there were no significant differences between the
different times of day, while for the gray fox, fewer records were observed during the day.
Plots show the model-predicted values (solid line), confidence band (shaded area), and
partial residuals (points)

Figure 7 - Download source file (2.97 MB)
Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's
cat (B) by seasons. No differences were observed between seasons for the gray fox. For
Geoffroy's cat, the highest number of observations was recorded in winter, followed by
spring, with fewer observations in autumn and summer. Plots show the model-predicted
values (solid line), confidence band (shaded area), and partial residuals (points)
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 12 

Abstract 13 

The replacement of grasslands with monospecific forests of Australian acacia (Acacia melanoxylon) has led to 14 

significant changes in habitat structure across the landscapes of Buenos Aires, Argentina, particularly in the 15 

Tandilia Mountain System. Given that this invasive tree drastically modifies plant architecture in these mountain 16 

grasslands, it is expected to affect the presence and habitat-use patterns of native fauna. We predicted a lower 17 

frequency of native carnivorous mammals in areas invaded by exotic acacia compared to native grasslands/scrub 18 

environments. To test this prediction, mammal presence was assessed using camera traps (photo-trapping) in the 19 

Paititi Private Natural Reserve, located within the Tandilia Mountain System. Throughout four seasonal samplings 20 

spanning one year, we evaluated the environmental use and daily activity patterns of two dominant mammalian 21 

predators: the Pampas gray fox (Lycalopex gymnocercus) and the Geoffroy's cat (Leopardus geoffroyi). While 22 

both species showed preferences towards areas with higher vegetation cover, no preferences were observed 23 

regarding the occupation of grassland/scrub environments compared to acacia forests. Regarding activity patterns, 24 

the fox was found to be more crepuscular/nocturnal. At the same time, the cat did not exhibit a clear activity 25 

pattern, being potentially active at any time of the day. The ecological flexibility may explain why they were not 26 

significantly affected by habitat changes in the studied area. Additionally, the remaining patches of native habitat 27 

in the region may help mitigate the effects of anthropogenic impact. 28 

Keywords: Mammals, grassland ecosystems, invasive species management, carnivore ecology, camera-trapping, 29 

biodiversity monitoring 30 
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Introduction 32 

Biological invasions constitute one of the main global environmental issues due to their profound impact 33 

on ecosystems (Vitousek et al., 1996). Some invasive species have altered ecosystems by modifying their 34 

ecological characteristics in an unprecedented way, leading to environmental deterioration and biodiversity loss 35 

(Charles & Dukes, 2007; Isbell et al., 2023).  36 

Grasslands are one of the most widespread vegetation types on the planet (Bilenca & Miñarro, 2004). 37 

Their high soil productivity has made them a target for intense agricultural activity, leading to their replacement or 38 

degradation over recent decades. Consequently, the remaining grassland patches face increasing threats from 39 

invasive species, further compounding conservation challenges (Zalba & Villamil, 2002). 40 

In Argentina, the Pampas region consists of a vast plain originally dominated by tall grasslands, where the 41 

introduction and rapid proliferation of cattle and horses led to a replacement of the tall grasses' physiognomy with 42 

short grasses. Pampas’ landscape is formed by parcels with different land uses, with large areas being utilized for 43 

crops and grazing, rural settlements, and towns (Baldi et al., 2006). However, the proportion of land that can be 44 

dedicated to crops or grazing fields depends on soil quality or suitability, so areas unsuitable for these purposes, 45 

such as rocky, saline, or sandy soils, remain dominated by native grasslands (Viglizzo et al., 2001; Baldi et al., 46 

2006). 47 

Within the Pampas region, the Tandilia Mountain System has remained a biodiversity refuge for flora and 48 

fauna and a provider of ecosystem services, contrasting with the surrounding grassland areas, as its rocky soils 49 

prevent agricultural expansion (Vignolio, 2021). However, these environments are also being progressively 50 

degraded by the spread of invasive plant species, such as blackberry (Rubus ulmifolius Schott) and Australian 51 

blackwood (Acacia melanoxylon R. Br.), among others, which are rapidly colonizing increasingly larger areas of 52 

the hill range (Zaninovich et al., 2023). Due to its varied and effective proliferation strategies, the Australian 53 

acacia is an invasive tree particularly challenging to eradicate. This species releases allelopathic compounds that 54 

inhibit the growth of neighboring plants; accumulates biomass in the soil, acting as a physical barrier to seedling 55 

establishment; and competitively excludes native species through both aboveground and belowground competition 56 

for light and other resources. As a result, it frequently establishes near-monocultures, overwhelmingly dominating 57 

the landscape. Notably, the root systems of A. melanoxylon can access water and nutrients from deeper soil layers 58 

than those typically available to grassland species (Le Maitre et al., 2011; Souza-Alonso et al., 2017). This 59 

replacement of native flora by acacias is known to cause negative effects on biodiversity, fire regimes, water use, 60 

and soil properties. Acacia trees currently exhibit extensive expansion in all mountainous sectors of the Tandilia 61 

System (Vieites-Blanco & Prieto, 2020). 62 
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In addition to the massive extinction of large mammals since the late Pleistocene (Barnosky & Lindsey, 63 

2010), changes produced by human activity in the last 100 years have led to the extinction of all or a large part of 64 

the remaining medium and large mammals of the Pampa´s grasslands ecoregion, such as the jaguar (Panthera 65 

onca) and the pampas deer (Ozoteceros bezoarticus), and have changed the distribution and abundance of many 66 

other species (Azpiroz et al., 2012). Among these mammals, carnivores are commonly used as focal species in 67 

conservation initiatives (Linnell et al., 2000; Sanderson et al., 2002). This is because they can exert important top-68 

down ecological effects, influencing both community structure and ecosystem function. Predators play a 69 

fundamental role in controlling herbivore populations, as well as in controlling their feeding behaviors, indirectly 70 

allowing greater plant species abundance due to reduced herbivory pressure (Dirzo et al., 2014; Atkins et al., 71 

2019). These characteristics make them well-suited as biodiversity indicators, guiding conservation actions based 72 

on their presence beyond their ecosystem benefits (Natsukawa & Sergio, 2022). Moreover, carnivore species are 73 

often used as indicators of an area’s conservation status due to the substantial impacts that food limitation and 74 

habitat fragmentation can have on their populations (Sergio et al., 2008). 75 

Numerous studies have examined the composition (e.g., Caruso et al., 2016) and the trophic 76 

characteristics of species within the carnivore assemblages in the Pampas region (e.g., Canepuccia et al. 2008; 77 

Farías and Kittlein, 2008; Guidobono et al., 2016). However, little is known about how replacing native grasslands 78 

with invasive trees, such as blackwood acacias, affects the spatial and temporal composition of carnivore 79 

assemblages. The Pampas gray fox (Lycalopex gymnocercus) and Geoffroy's cat (Leopardus geoffroyi) are two of 80 

the most commonly recorded carnivores in the Pampean grassland ecoregion, with the former exhibiting more 81 

generalist feeding habits (Manfredi et al., 2004; Canepuccia et al., 2008; Luengos et al., 2012). These species are 82 

primarily crepuscular and nocturnal, making them elusive and difficult to spot (Silva-Rodríguez et al., 2025). In 83 

this landscape, native mammals coexist with introduced species with significant potential for ecological 84 

disruption, such as the feral pig (Sus scrofa), and free-ranging dog (Canis lupus familiaris), both of which pose 85 

serious threats to native species through predation, competition, or habitat degradation (Herrero et al., 2006; 86 

Barrios-García & Ballari, 2012; Zanón‐Martínez & Lessa, 2014; Isbell et al., 2023). The feral pig may compete for 87 

food (e.g., small prey, carrion, fruits) and habitat with native carnivores (Barrios-García & Ballari, 2012). 88 

Furthermore, feral pigs, through their rooting and wallowing behavior, can alter vegetation structure, potentially 89 

affecting the availability of shelter for native mammals. These environmental modifications may trigger bottom-up 90 

effects in the trophic web, indirectly impacting predators such as Geoffroy’s cat and Pampas gray fox (see Herrero 91 

et al., 2006).   92 
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This study aims to describe the assemblage composition of carnivore species in a small protected area of 93 

the Tandilia Mountain System (Paititi Private Natural Reserve, PPNR) and to assess the spatial and temporal 94 

variation in their activity using camera trapping. To achieve this, we compared areas characterized by native 95 

habitats with those invaded by A. melanoxylon. Our focus was on the reserve's two most representative and 96 

prevalent species: the Pampas gray fox and Geoffroy’s cat. 97 

 98 

Materials and Methods 99 

Study area 100 

This study was conducted in the PPNR (37°55’25’’S, 57°49’12’’W; Fig. 1), which is a member of the 101 

Argentine Network of Private Nature Reserves (https://reservasprivadas.org.ar/). The Reserve is located in the 102 

southeastern sector of the Tandilia mountain system, Buenos Aires Province, Argentina, and is considered a relic 103 

of native grassland. The PPNR features low, isolated hills (Sierra de los Padres) reaching elevations of up to 500 m 104 

a.s.l. The landscape includes broad ridges and valleys, with vegetation structured along distinct geomorphic zones: 105 

gentle lower slopes dominated by shrubs, grasses, and geophytes; steeper, rocky hillsides with sparse cover; and 106 

relatively flat summits characterized by grasslands over loess soils. The climate is temperate, with an average 107 

annual rainfall of ~850 mm, and summers are often characterized by water deficits, indicating seasonal moisture 108 

limitations (Echeverría et al., 2017). 109 

The reserve dedicates 220 hectares to the conservation of the hill range's native habitats (grasslands and 110 

shrublands). Due to its high diversity, endemism, and archaeological remains, PPNR has been designated a 111 

Valuable Grassland Area (Bilenca & Miñarro, 2004). Additionally, it is recognized as an area of interest for 112 

conservation and ecotourism and is part of the Alianza de Pastizal (an alliance between livestock and agricultural 113 

producers and conservationists, https://www.avesargentinas.org.ar/alianza-del-pastizal).  114 

The vegetation in the PPNR is characterized by the predominance of Paspalum quadrifarium and P. 115 

exaltatum at the base of the hills, forming a distinctive tall grassland environment (Bilenca & Miñarro, 2004; 116 

Arcusa, 2016). On the slopes, shrublands dominated by Baccharis articulata, B. coridifolia, B. dracunculifolia, 117 

Buddleja thyrsoides, and Dodonaea viscosa prevail, alongside characteristic thickets of Colletia paradoxa. At the 118 

summit, large areas are dominated by ferns of the genera Rumohra, Adiantum, and Blechnum, with rocks covered 119 

in mosses and lichens. The invaded area is dominated by Acacia melanoxylon, which forms forest stands with a 120 

closed canopy, open understory, and a ground layer largely composed of litter (Arcusa, 2016). Across the Tandilia 121 

Hill System, this species is a widespread invader (Arcusa, 2016) and currently occupies approximately 18% of the 122 

PPNR (Zaninovich et al., 2023). Acacia patches vary in size and occur interspersed with extensive native 123 
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grasslands and shrublands. Beyond the foothills, the surrounding plains are dominated by grasslands and agro-124 

pastoral landscapes, whereas the higher elevations of the hills remain less affected by acacia encroachment, 125 

supporting a distinctive high-altitude grassland–shrubland ecosystem. 126 

 127 

Sampling design  128 

We used camera traps to register the daily activity patterns of mammals in the study area (see Wearn & 129 

Glover-Kapfer, 2019; Appendix 1). Camera traps were active over an average of 15 days in each of the four 130 

seasons: winter, spring, summer, and autumn (between June 2022 and May 2023; see Appendix 2). The cameras 131 

operated continuously 24 hours a day.  132 

Sixteen camera traps were deployed, with eight cameras placed in each of two distinct environments (i.e., 133 

acacia forest vs. grasslands and shrublands). Each camera was set to capture three photos per detection event (in 134 

some cases, 10- or 20-second videos were recorded), with a 15-second minimum interval between each event, and 135 

utilizing either normal or low PIR sensitivity.  136 

Given the difficulty of individual identification, we minimized pseudoreplication by defining independent 137 

detections as those of the same species recorded at the same camera station at least 60 minutes apart. Similar 138 

independence thresholds have been widely adopted in camera trap studies on mammals, including those by 139 

O’Brien et al. (2003), Di Bitetti et al. (2006), and Wang and Macdonald (2009), who applied intervals of 30 to 60 140 

minutes to define independent capture events. These criteria ensure that each event is more likely to represent a 141 

distinct visit or individual, improving data reliability and comparability across studies. Camera traps within the 142 

same environmental type were placed at a minimum distance of 100 meters apart. This distance was determined 143 

based on the environment patch sizes within the reserve (grassland/scrub or acacia forest), ensuring that both were 144 

equally represented. Although the home range of most carnivorous mammals typically exceeds this distance, this 145 

spacing is appropriate for assessing relative environmental use and daily activity patterns, in fragmented or 146 

heterogeneous landscapes (e.g., Tobler et al., 2008; O’Brien et al., 2003; Rovero et al., 2013; Sollmann et al., 147 

2013).  Data collection was conducted in two distinct environments: (a) grassland/shrubland and (b) acacia forest, 148 

which were defined according to the following criteria: 149 

Native grassland/shrubland: mixed composition with grassland/shrubland characterized by the predominance of 150 

Baccharis dracunculifolia ssp. tandilensis and Paspalum quadrifarium. These species are distributed from the 151 

foothills to the higher elevations. 152 
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Acacia forest: areas where the exotic Australian acacia (A. melanoxylon) is progressively replacing native 153 

grasslands. They have a uniform distribution across various altitudinal zones of the mountain range, from the 154 

foothills to the higher elevations of the reserve. 155 

For the placement of the camera traps, locations frequented by wildlife and sites where the vegetation 156 

provided some levels of protection were chosen, minimizing contact with livestock or human activity (Online 157 

Resource 1). The sites were baited with a minimal dose of canned tuna during the first day of camera trap 158 

placement. We manually check all camera records, taking into account the recommendations of Silva-Rodríguez et 159 

al. (2025) regarding current quality control practices (see also Apps et al., 2018). 160 

We identified two spatial scales of analysis to investigate the relationship between carnivore presence and 161 

activity. The first level of comparison was conducted between the two major environmental units in the reserve: 162 

grassland/shrubland (native habitat) vs. Australian acacia forest (exotic habitat). The second level encompassed a 163 

broader spatial scale, capturing the environmental heterogeneity resulting from hill topography and the patchy 164 

distribution of vegetation. Consequently, an additional variable was quantified to describe the level of landscape 165 

heterogeneity at each point corresponding to the location of each camera trap. For this purpose, and to reflect 166 

spatial variation in environment composition, two circles of radius 20 ± 0.5 m and 50 ± 0.5 m were determined 167 

(using the camera location as the center) based on the size and distribution of the environments in the reserve (Fig. 168 

2). These distances were selected to capture both the immediate surroundings of the camera and a broader 169 

landscape context. The variables considered were the percent coverage of 1) grassland, 2) shrubs, 3) acacia trees, 170 

4) exposed rock, and 5) open areas within the area of the circle, using Google Earth satellite images as a reference. 171 

The latter variable refers to zones of short grasses or, in some cases, areas with crops, characterized by having 172 

lower vegetation coverage compared to grassland/shrubland areas and acacia woodland. The circle measurements 173 

were arbitrarily defined, with the 20 m radius scale intended to capture the vegetation characteristics closest to the 174 

camera, while the 50 m radius scale was designed to reflect the broader landscape characteristics of the area 175 

surrounding the camera. 176 

 177 

Data analyses 178 

Generalized linear mixed models (GLMMs) with a Poisson distribution and an offset (recording hours) 179 

were initially fitted to compare the activity patterns of all recorded species. However, due to overdispersion, we 180 

used generalized linear mixed models (GLMMs) with a negative binomial distribution, incorporating the same 181 

offset and a log link function. The number of photographic capture events of individuals via camera trapping 182 

served as the response variable, with species (Pampas gray fox, Geoffroy’s cat, skunk, and lesser grison) as the 183 
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explanatory variable. The location in geographic coordinates of each camera was treated as a random effect, as it 184 

was replicated across different seasons. This approach was implemented using the glmer function from the lme4 185 

package (Bates et al., 2015). However, after observing that the random variable did not contribute to the 186 

variability, it was removed from the model based on a likelihood ratio test comparison with GLMs. Subsequently, 187 

generalized linear models (GLMs) with a negative binomial distribution, incorporating an offset (recording hours) 188 

and a log link function, were employed using the glm.nb function from the MASS package (Venables & Ripley, 189 

2002). Differences among the levels of the fixed factor were assessed through multiple-comparison tests (Tukey 190 

Contrasts) using the multcomp package (Hothorn et al., 2008).   191 

Given the proximity among camera trap stations, we tested for spatial autocorrelation in the residuals of 192 

the GLMs using Moran’s I (p > 0.05), implemented with the spdep package (Pebesma & Bivand, 2023). We used 193 

camera trap coordinates to define spatial neighbors within a biologically meaningful threshold based on the 194 

estimated home range size of each species (Lucherini & Luengos Vidal, 2008; Manfredi et al., 2012). No 195 

significant spatial autocorrelation was detected, indicating that the assumption of independence among stations 196 

was met.  197 

To analyze the effect of environmental variables on the activity patterns of the Pampas gray fox and 198 

Geoffroy’s cat, the same approach was applied. Initially, the correlation between environmental variables was 199 

assessed using Spearman's correlation test with the cor.test function, excluding variables that showed significant 200 

correlation. We considered not only the p-value but also the correlation coefficient (r), ensuring that it remained 201 

below 0.5, a threshold commonly used as a general reference in similar analyses. The number of photographic 202 

capture events, captured via camera trapping, was used as the response variable, while the explanatory variables 203 

included season (autumn, spring, and summer) and environmental percent cover (grassland, shrubs, acacia trees, 204 

exposed rock, and open areas) within two predetermined ratios of 20 and 50 meters around each camera trap. This 205 

methodology was also repeated to test the daily activity patterns of the Pampas gray fox and Geoffroy’s cat, with 206 

the response variable remaining as the number of photographic capture events. The explanatory variable, in this 207 

case, was the activity period (sunrise, day, sunset, and night), determined based on sunrise and sunset times 208 

provided by the Naval Hydrographic Service for the city of Mar del Plata on the sampling start and end dates for 209 

each season, which correspond to civil time (also known as civil twilight times; see Appendix 2). All four seasons 210 

were included in this analysis. For both the analyses of environmental variables influencing activity patterns and 211 

the assessment of daily activity patterns, only the Pampas gray fox and Geoffroy’s cat were examined, as these 212 

were the only species with a sufficient sample size for meaningful comparisons. The fitness of all models was 213 

checked using DHARMa diagnostic plots employing the DHARMa package (Hartig, 2022). To identify the most 214 
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parsimonious model, we applied a stepwise backward model selection procedure to eliminate non-significant main 215 

effects until only significant terms remained. Model simplification was performed by sequentially comparing 216 

nested models using likelihood ratio tests (ANOVA). All tests were two-tailed with a significance level of α = 217 

0.05. The results were visualized using the R package visreg (Breheny & Burchett, 2017). Statistical analysis of 218 

the data was performed using the R software, Version 4. 3. 1 (R Core Team, 2023). 219 

 220 

Results 221 

Carnivore Assemblage  222 

Four carnivore species present in our records were photographed in both grassland and acacia forests: 223 

Pampas gray fox (Lycalopex gymnocercus), the Geoffroy’s cat (Leopardus geoffroyi), skunk (Conepatus chinga), 224 

and lesser grison (Galictis cuja). Numerous native non-target mammal species (e.g., Oxymycterus rufus, Didelphis 225 

albiventris, Dasypus hybridus, see details in Online Resource 2) were also recorded. Other non-native species 226 

observed in our records, though in low numbers, included hares (Lepus europaeus), axis deer (Axis axis), wild 227 

boar (Sus scrofa), rats (Rattus rattus), and domestic dogs (Canis lupus familiaris).  228 

A total of 582 photographic shots of the Pampas gray fox (251 in grassland/shrubland, 331 in acacia 229 

forest), 73 of the Geoffroy’s cat (43 in grassland/shrubland, 30 in acacia woodland), 15 of skunks (3 in 230 

grassland/shrubland, 12 in acacia woodland), and 14 of lesser grison (11 in grassland/shrubland, 3 in acacia 231 

woodland) belonging to the carnivore assemblage were recorded (Fig. 3). Significant differences were observed 232 

between species (X2 = 121.67, p < 0.05), with the daily records of gray fox being higher than those of the 233 

Geoffroy’s cat, lesser grison, and skunk (β = 2.0777 ± 0.2579, z = 8.058, p < 0.05; β = 2.8885 ± 0.3322, z = 8.694, 234 

p < 0.05; β = 3.8032 ± 0.3602, z = 10.560, p < 0.05). Additionally, the records of the Geoffroy’s cat were higher 235 

than those of the skunk (β = -1.7255 ± 0.3764, z = -4.584, p < 0.05). 236 

Although no statistically significant differences were found in the abundance of lesser grisons relative to 237 

skunks or Geoffroy’s cats (β = 0.9148 ± 0.4308, z = -2.123, p > 0.05; β = -0.8108 ± 0.3498, z = -2.318, p > 0.05), 238 

there were more total records of the Geoffroy’s cat compared to grisons or skunks (Fig. 3).  239 

 240 

Relationship between Pampas gray fox and Geoffroy's cat with environmental variables 241 

Pampas gray fox  242 

A significant effect on gray fox observation frequency (Table 1) was observed at the 20 m radius scale 243 

concerning the variables “season”, “shrub percentage”, and “grass percentage”. The occurrence frequency was 244 

higher in the spring season (β = 0.836 ± 0.15, z = 5.557, p < 0.05). Moreover, analyses of environmental variables 245 
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showed a positive relationship between detection rate and shrub cover (β = 0.0077 ± 0.0019, z = 4.137, p < 0.05), 246 

while detection frequency decreased as grass cover increased (β = -0.0107 ± 0.0028, z = -3.860, p < 0.05) (Fig. 247 

4A, B; see also Appendix 3).  248 

The variables “season” and “open areas” affected the observation frequency of Pampas gray foxes at the 249 

50 m scale (Table 1). In this case, a higher detection rate of gray foxes was observed in spring compared to 250 

autumn (β = 0.7878 ± 0.1815, z = 4.341, p < 0.05) and summer (β = -0.9286 ± 0.2206, z = -4.210, p < 0.05), as 251 

well as a higher detection rate with increased coverage of open areas (β = 0.0252 ± 0.0096, z = 2.621, p < 0.05) 252 

(Fig. 4C). 253 

 254 

Geoffroy's cat  255 

Considering the area defined by a 20m radius scale, no variable explained the occurrence frequency of 256 

the Geoffroy’cat. The best fit was presented by the null model (Table 2). However, at the 50 m scale, higher shrub 257 

coverage resulted in more Geoffroy’scat’s records (β = 0.029 ± 0.012, z = 2.377, p < 0.05) (Fig. 5A), and there 258 

were also more records with lower rock coverage (β = -0.0915 ± 0.0459, z = -1.994, p < 0.05) (Fig. 5B; Table 2; ; 259 

see also Appendix 3). 260 

 261 

Activity patterns of Gray Fox and Geoffroy's cat  262 

In the combined model, where the frequencies of gray fox and Geoffroy’s cat were evaluated within the 263 

same model, a higher occurrence frequency of fox (β = 2.0933 ± 0.1475, z = 14.19, p < 0.05; Fig. 6) than of cat 264 

was found. Time of day had a significant effect: abundances were higher during the day (β = 1.298 ± 0.336, z = 265 

3.86, p < 0.001) and at night (β = 1.966 ± 0.328, z = 5.99, p < 0.001) compared to sunrise, while sunset did not 266 

differ significantly from sunrise (β = 0.301 ± 0.358, z = 0.84, p = 0.401). The effect of environment (grassland vs. 267 

reference habitat) was not significant (β = 0.258 ± 0.224, z = 1.15, p = 0.249). No differences between species 268 

were observed in the use of native grassland/shrubland environments compared to acacia forests.  269 

No differences were observed in Geoffroy's cat among moments of the day (daily activity). However, a 270 

trend towards a higher number of records at sunrise was observed (Fig. 6A). However, differences in daily activity 271 

patterns for the Pampas gray fox (Table 3) were observed. For this species, the day showed fewer observations or 272 

records of individuals compared to sunrise (β = -0.7908 ± 0.1953, z = -4.048, p < 0.05), sunset (β = -1.1085 ± 273 

0.1855, z = -5.975, p < 0.05), and night (β = -1.1495 ± 0.16635, z = 6.910, p < 0.05) (Fig. 6B).  274 

Significant differences between seasons were found for the Geoffroy’s cat (Table 3), with higher record 275 

rate in winter than in autumn (β = 1.9496 ± 0.5700, z = 3.420, p < 0.05) and then in summer (β = 2.1504 ± 0.8236, 276 
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z = 2.611, p < 0.05), and higher in spring than in autumn (β = 1.4866 ± 0.4672, z = 3.182, p < 0.05) (Fig. 7A). No 277 

seasonal activity differences were observed for the Pampas gray fox (Fig. 7B; Appendix 3). 278 

 279 

Discussion 280 

During the sampling period, we recorded four of the five native carnivore species known to inhabit the 281 

region: Geoffroy's cat, Pampas gray fox, lesser grison (Galictis cuja), and skunk (Conepatus chinga) (see 282 

Aranguren et al., 2023). The cougar (Puma concolor) was the only carnivore species not observed, despite its 283 

confirmed presence in the area, as indicated by occasional sightings reported by residents (E. González Zugasti, 284 

pers. comm.). Additionally, we detected the presence of the white-eared opossum (Didelphis albiventris) and the 285 

southern long-nosed armadillo (Dasypus hybridus).  286 

Among the carnivores observed using camera traps, the Geoffroy's cat and the Pampas gray fox had the 287 

highest number of recorded sightings. Differences in habitat use and daily activity patterns were observed between 288 

the latter species. Contrary to our prediction, no differences were found in habitat use when native 289 

grasslands/shrubs were compared with areas invaded by acacia forests. The Pampas gray fox exhibited a higher 290 

frequency of occurrence in the studied environments than the Geoffroy's cat. The Pampas gray fox exhibited 291 

predominantly crepuscular/nocturnal habits, while Geoffroy's cat did not show a distinct daily activity pattern.  292 

Both species appear to be abundant in the study area. Overall, higher activity levels were recorded for 293 

both predators during winter and spring. However, although a trend suggested increased Pampa’s fox activity in 294 

spring, no statistically significant differences were observed among the four seasons. Seasonal and daily variations 295 

in this species may be influenced by climatic factors or fluctuations in agricultural and livestock activities that 296 

characterize the region's landscape (Luengos Vidal, 2009). In contrast, comparing the four seasons for Geoffroy's 297 

cat revealed more records during winter and spring. This finding diverges from other studies in the Pampas region, 298 

which indicate that individuals of this species are primarily active during the summer months (Manfredi et al., 299 

2011). 300 

Habitat use by these species appears to respond to variations in the spatial arrangement of shrub/grassland 301 

coverage in the study area (see Online Resource 3). At a finer spatial scale, the presence of the Pampas gray fox 302 

was positively correlated with increased shrub coverage at the expense of native grasslands. However, at a larger 303 

spatial scale, it was associated with the availability of open areas. In contrast, Geoffroy's cat showed no 304 

association with environmental variables at the smallest scale; however, at a larger scale, its occurrence increased 305 

with greater shrub coverage and decreased with higher exposed rock coverage.  306 
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Most camera trap records in this study corresponded to the Pampas grey fox and Geoffroy's cat, with 307 

fewer events documented for smaller predators such as the skunk (Conepatus chinga) and the lesser grison 308 

(Galictis cuja). The low occurrence of these smaller species may be related to spatiotemporal segregation, 309 

resulting from their overlap with larger predators, which could negatively affect them (e.g., Caruso et al., 2016).  310 

Consistent with previous studies, the low number of grison detections in our survey likely reflects the species’ 311 

inherently low detectability. Camera traps often fail to detect and identify small-bodied species due to limitations 312 

related to body size and distance from the camera (Burton et al., 2015). Moreover, their reduced detection 313 

frequencies may also be influenced by rapid urbanization, habitat loss, and habitat modification associated with 314 

agricultural and livestock expansion, which increase sampling challenges for elusive species despite standardized 315 

sampling effort and methodology (Caravaggi et al., 2017). Certain carnivore species, such as Puma concolor, 316 

either exhibit greater elusiveness to camera trapping or have inherently lower relative abundances. In contrast, 317 

other species, such as Herpailurus yagouaroundi and Leopardus colocolo, are nearly absent from the Pampean 318 

region (Luengos Vidal et al., 2019; Pereira et al., 2019; Lucherini et al., 2019; Bisceglia et al., 2019; De Angelo et 319 

al., 2019; Castillo & Schiaffini, 2019; Fracassi et al., 2019; Aprile et al., 2019).  320 

The presence of exotic carnivores, such as free-roaming domestic dogs (Canis lupus familiaris), also 321 

plays a role (Aprile et al., 2019). Dogs without movement restrictions in natural areas are known to significantly 322 

affect native carnivore populations globally (Hughes & Macdonald, 2013; Doherty et al., 2017; Mitchell & Banks, 323 

2005), including in protected areas of Argentina (Zamora-Nasca & Lambertucci, 2023). Although both the skunk 324 

and the lesser grison are generalist species often found in agroecosystems (Castillo et al., 2014; Donadio et al., 325 

2004; Donadio & Buskirk, 2006), they tend to be more abundant in native grasslands farther from human 326 

settlements, roads, and other anthropogenic influences (e.g., Caruso et al., 2016). 327 

 328 

Habitat use by gray fox and Geoffroy's cat 329 

Both the Pampas gray fox and the Geoffroy's cat have a wide distribution range in Argentina, Bolivia, 330 

Brazil, Paraguay, and Uruguay. These species are considered relatively common carnivores throughout their 331 

distribution area (Pereira et al., 2015; Lucherini, 2016). More generalist carnivores appear to be more tolerant to 332 

landscape changes and may even benefit from the development of agricultural and livestock activities (Canepuccia 333 

et al. 2008; Caruso et al., 2016; Šálek et al. 2010). They may benefit from and expand their distribution range due 334 

to the increased availability and diversity of prey associated with human activities (MacDonald, 1983; Luengos 335 

Vidal, 2009, 2012). 336 
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Particularly, the Pampas gray fox is a generalist South American canid that adapts very well to the 337 

human-dominated landscape of the Argentine pampas (Luengos Vidal et al., 2012). This species exhibits 338 

considerable ecological flexibility in its diet (Farías and Kittlein, 2008), and daily activity patterns (Luengos 339 

Vidal, 2009; Lucherini & Luengos Vidal, 2008; Di Bitetti et al., 2009), and also occupies a wide range of 340 

environments in open and transitional areas, including native grasslands and marshes (García & Kittlein, 2005; 341 

Canepuccia et al., 2008), and is also commonly found in agricultural and livestock environments within the 342 

Pampas region (Lucherini & Luengos Vidal, 2008). Luengos Vidal (2009) recorded that this species selects areas 343 

with denser vegetation coverage, either due to more favorable conditions or evasive behavior, such as avoiding 344 

human presence. In the Pampas region, patches with greater vegetation coverage throughout the year may serve as 345 

a crucial resource for the survival of Pampas gray fox populations. However, both our results and those of 346 

Luengos Vidal (2009) agree that vegetation cover is significant at smaller spatial scales, while at larger geographic 347 

scales, open environments are more important for the presence of the Pampas gray fox. Although it was expected 348 

that this species would primarily utilize native grassland/shrubland environments, as found in other studies (Di 349 

Bitetti et al., 2009), the results of this study did not reveal preferences regarding the type of habitat used 350 

(grassland/shrubland vs. Australian acacia forests). One possible explanation for this could be the absence of 351 

similarly sized competitors, as the Pampas gray fox (4–8 kg) and the Geoffroy's cat (3–5 kg) are among the few 352 

carnivores within this weight range in the Tandilia Mountain System, where the puma (Puma concolor) is rarely 353 

observed. Another possible explanation could be the spatial scale of analysis used in this study. Considering a 354 

distance radius of 50 meters from the camera trap, open areas (with short grasses or near crops) largely accounted 355 

for the presence of this species. Accordingly, the Pampas gray fox appears to select open landscapes where 356 

patches of dense vegetation are nonetheless available as refugia, which would explain the contrasting responses 357 

observed at different spatial scales. 358 

Unlike the Pampas gray fox, the Geoffroy's cat exhibits a more specialized diet that is almost exclusively 359 

carnivorous, making it less capable of adapting to anthropogenic disturbances and changes in prey abundance 360 

(Canepuccia et al., 2008; Caruso et al., 2016). However, like most predators with a wide geographic distribution, 361 

its diet varies depending on the environment and the availability of prey, ranging from small rodents to large 362 

waterbirds (e.g., Bisceglia et al., 2008; Canepuccia et al., 2008; Manfredi et al., 2004; Guidobono et al., 2016). 363 

This dietary flexibility may promote a certain degree of ecological plasticity, enabling the Geoffroy's cat to occupy 364 

a wide variety of habitats, including scrublands, dry forests, marshes, and grasslands (Manfredi et al., 2006; 365 

Canepuccia et al., 2007, 2008; Pereira et al., 2010; Cuyckens et al., 2016). Therefore, this species may also exhibit 366 
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a certain degree of tolerance to anthropogenic disturbances, allowing it to inhabit agricultural and livestock areas 367 

(Cuellar et al., 2006; Castillo et al., 2008). 368 

In this regard, habitat selection by Geoffroy’s cat can vary significantly, as studies suggest that this 369 

species prefers environments with low levels of anthropogenic disturbance (Manfredi et al., 2006; Cuellar et al., 370 

2006). Conversely, other studies indicate a preference for forest habitats dominated by exotic species over native 371 

grasslands or protected areas (Manfredi et al., 2012; Caruso et al., 2016). Our results indicate that vegetation cover 372 

is a highly relevant factor concerning space use in this species, likely facilitating prey stalking and providing 373 

refuge (e.g., Canepuccia et al., 2007). Although this predator also utilizes open areas as movement corridors 374 

(Cuellar et al., 2006; Manfredi et al., 2006), an increase in coverage of bare rock coverage may limit opportunities 375 

for concealment or shelter. Additionally, forests may provide useful structural features for Geoffroy's cat, given its 376 

ability to climb trees, for hunting and shelter (Manfredi et al. 2006, see Online Resource 4).  377 

As previously noted, this species has a wide latitudinal distribution and exhibits remarkable adaptability 378 

to diverse habitats, including grasslands, shrublands, and forests (e.g., Cuyckens et al., 2016). Although we 379 

initially expected that the lack of understory vegetation in Acacia forests would negatively affect Geoffroy’s cat, 380 

this environment appears to provide suitable habitat. These findings highlight that species’ responses to habitat 381 

degradation and to the replacement of native vegetation by exotic species may depend more on their ecological 382 

traits than on the native or exotic status of the vegetation. 383 

Although the focal species exhibit a broad home range (with the Pampas gray fox having a home range of 384 

2.13 ± 1.37 km², Luengos Vidal, 2009, and the Geoffroy’s cat ranging between 2.48 and 3.42 km², Manfredi et al., 385 

2012), the objective of this study was to detect differential habitat use and activity patterns at a small geographical 386 

scale. Thus, our study was developed in a relatively small protected area (220 ha) surrounded by an agriculture-387 

dominated landscape matrix. The limitations of working within a relatively small area when studying species with 388 

large home ranges are challenges faced by reserve managers; initiatives like ours can provide valuable insights for 389 

similar small reserves with patchy habitats. One of the problems of protected areas at a global level is that they are 390 

mostly small in size (Schauman et al., 2023). Generating insights into the effects of invasive species on key 391 

biodiversity components, such as carnivores, is crucial. Therefore, understanding how sensitive components like 392 

carnivores respond to the recurring issue of invasive species presents a fundamental challenge for conservation 393 

management in these protected areas. Geoffroy's cat individuals may occupy a specific home range for 4 to 5 394 

months before shifting territories. Therefore, a 12-month sampling period could provide information on different 395 

individuals, even though this study covered approximately 6 km in length. Contrary to our original predictions, 396 

neither the Pampas gray fox nor the Geoffroy's cat exhibited clear preferences for native grassland or shrubland 397 
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over Australian acacia forest; rather, both species were observed to traverse and utilize both types of habitats. 398 

These species may exhibit considerable ecological flexibility and, consequently, in many cases, they may be less 399 

affected by or even benefit from anthropogenic impacts (Luengos Vidal, 2009; Manfredi et al., 2006).  400 

This same impact likely explains why other carnivores, which are more sensitive to habitat changes, have 401 

been recorded much less frequently, even when using attractive baits. For instance, the occasional detections of the 402 

white-eared opossum (Didelphis albiventris) and the southern long-nosed armadillo (Dasypus hybridus) may be 403 

related to their response to small bait. It is worth noting that the record rate of D. albiventris in natural settings 404 

tends to be much lower than in human-modified habitats (including urban and suburban areas), so the low 405 

detection rates observed here could be expected. Although the study encompassed areas of native grassland and 406 

shrubland, these habitats were relatively limited in extent within a highly fragmented landscape. Considering that 407 

the home ranges of most Carnivora species cover several kilometers, the proximity of populated areas, agricultural 408 

and livestock zones, and roads likely affects the spatial use and detection of all species inhabiting this region. 409 

 410 

Daily activity patterns in Pampas gray fox and Geoffroy's cat  411 

Unlike herbivores, the availability of food for carnivores follows a daily activity cycle that is linked to the 412 

cycles of their prey. Since capture efficiency varies with prey activity, those carnivores that can synchronize their 413 

foraging time with periods when their prey is most vulnerable will achieve greater success at a lower cost than 414 

those that forage randomly (Zielinski, 1988). In line with this, if prey species alter their activity patterns, the 415 

predators’ patterns may also change, which could explain differences in activity patterns observed across studies, 416 

seasons, and specific habitats. However, in animals with generalist diets, the ability to exploit prey with diverse 417 

activity patterns is expected to confer greater flexibility in their temporal activity. The Pampas fox exhibited a 418 

predominantly crepuscular and nocturnal activity pattern, consistent with findings from other studies in the 419 

Pampas region (Luengos Vidal, 2009; Lucherini & Luengos Vidal, 2008). However, in natural areas with less 420 

human disturbance, this species has been reported to display greater diurnal activity (Luengos Vidal, 2009; see 421 

also Di Bitetti et al., 2009). Given its behavioral plasticity, it is likely that in this area, the fox adjusts its daily 422 

activity patterns to balance resource acquisition (e.g., aligning with prey activity periods) and risk minimization 423 

(e.g., avoiding predation, agonistic interactions with dogs, or disturbances from human activities). 424 

Regarding the Geoffroy's cat, we did not observe a clear preference for specific times of the day. While 425 

previous studies suggest it is more active during twilight and nighttime (Castillo et al., 2008; Pereira et al., 2010; 426 

Cuellar et al., 2006), this species is also known to adapt its activity patterns in response to periods of lower prey 427 

availability, even shifting to hunting diurnal prey (e.g., Pereira et al., 2006; Pereira, 2010). Another reason that 428 
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could explain the shift away from nocturnal habits in this species may be the energetic demands of maintaining 429 

body temperature during the night in environments where temperatures significantly decrease. Thus, a reduction in 430 

nocturnal activity could also be attributed to increased energy conservation, competition, or the avoidance of 431 

predation (Zielinski, 1988).  432 

This daily pattern may also be linked to differences in habitat preferences and environmental segregation 433 

between the larger predators. The Pampas gray fox, which is associated with more open areas, tends to move 434 

during low-light hours to reduce its detectability. In contrast, the Geoffroy's cat, which is more commonly 435 

associated with dense foliage, is less likely to be detected, suggesting that its activity patterns may not be strongly 436 

influenced by light levels. 437 

Future studies should aim to incorporate seasonal variation and climatic factors in order to more 438 

comprehensively assess their effects on mammals’ activity patterns and habitat use, particularly considering how 439 

energetic and reproductive trade-offs may modulate these behavioral responses. 440 

 441 

Final considerations  442 

Protected areas are designated geographic spaces aimed at long-term nature conservation, representing a 443 

crucial strategy to mitigate the expansion and impact of human-induced stressors on biodiversity and ecosystem 444 

services (IUCN 1994). Globally, these areas face two main challenges: insufficient coverage across various 445 

biomes, small size and fragmentation of habitats complicating conservation efforts (Schauman et al., 2023). In 446 

such a context, this study provides the first insights into the activity patterns and habitat use of two representative 447 

carnivore species in the mountainous environments of the Pampas, impacted by the colonization of exotic A. 448 

melanoxylon, and the fragmentation of the native grasslands. The high frequency of mesocarnivores in the PPNR, 449 

particularly near agricultural fields and areas with regular human activity (e.g., agricultural workers, tourists, and 450 

sporadic poachers) highlights the importance of this Reserve in providing habitat for these native species. Frequent 451 

daytime recordings of these carnivores in camera traps suggest that the individuals are familiar with their 452 

surroundings. If human activity were perceived as a threat, increased nocturnal activity would likely be observed 453 

(e.g., see also Luengos Vidal, 2009; Pereira, 2010). Additionally, no preference was found for native 454 

grassland/shrubland environments over monospecific Australian acacia forests for either species. However, the 455 

lack of a clear response to acacia invasion should be approached cautiously, as this invasive species in PPNR is 456 

generally distributed in small patches surrounded by grasslands and shrublands. Thus, despite the habitat 457 

flexibility of these abundant carnivores, further evaluation is required to assess their responses to extensive areas 458 
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dominated by acacia in the absence of grasslands and shrublands. Such assessments will provide a clearer 459 

understanding of their potential impacts on native fauna diversity and habitat use. 460 
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Table 1. Results from the stepwise backward model selection procedure for Pampas gray fox data 798 

analysis within 20-meter and 50-meter radii. 799 

 800 

Response 

Variable 

Explanatory 

Variable 

Final Model  Elimination 

statistic 

 

Radius of 20 

meters 

     

Counts  X2 p-value X2 p-value 

 Season 29.35 4.2368e-07   

 Schrubs 15.15 9.9555e-05   

 Grass 13.99 0.00018   

Radius of 50 

meters 

     

Counts  X2 p-value X2 p-value 

 Season 19.68 5.33e-05   

 Acacia   0.74 0.39 

 Exposed rock   0.17 0.68 

 Open areas 6.48 0.01   
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Table 2. Results from the stepwise backward model selection procedure for Geoffroy’s cat data analysis 829 

within 20-meter and 50-meter radii. 830 

 831 

Response 

Variable 

Explanatory 

Variable 

Final Model  Elimination 

statistic 

 

Radius of 20 

meters 

     

Counts  X2 p-value X2 p-value 

 Season   3.38 0.18 

 Acacia   1.04 0.31 

 Exposed rock   2.00e-4 0.98 

Radius of 50 

meters  

     

Counts  X2 p-value X2 p-value 

 Season   4.82 0.09 

 Schrubs 4.14 0.035   

 Grass   0.196 0.66 

 Exposed rock 3.86 0.049   

 Open areas   0.77 0.38 
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Table 3. Results from the stepwise backward model selection procedure for the occurrence frequency of 857 

the Pampas gray fox and Geoffroy’s cat in the analysis of daily and seasonal activity patterns. 858 

 859 

Response 

Variable 

Explanatory 

Variable 

Final 

Model 

 Elimination 

statistic 

 

Combined 

model 

     

Counts  X2 p-value X2 p-value 

 Environment 35.61 3.47e-07   

 Species 45.09 1.88e-11   

 Moment of the day 34.87 1.30e-07   

Pampas gray fox       

Counts  X2 p-value X2 p-value 

 Environment   0.09 0.75 

 Season 49.16 0.04   

 Moment of the day 7.99 1.20E-10   

Geoffroy’s cat       

Counts  X2 p-value X2 p-value 

 Season 21.17 9.70E-05   

 Environment 5.06 0.02   

 Moment of the day   4.41 0.22 
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Figures captions 880 

Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos Aires Province, Argentina. 881 

The area outlined in white represents Estancia Paititi, while the black outline marks the boundaries of the Paititi 882 

Private Natural Reserve 883 

Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point corresponding to a 884 

camera trap in Sierra Grande (Paititi Private Natural Reserve) using a Google Earth image. The contrast is also 885 

illustrated between an Acacia melanoxylon–invaded environment and a natural grassland/shrubland characteristic 886 

of the serrano environment. Map scale = 100 m. 887 

Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging to the Order Carnivora, 888 

considering both environments combined. Plots show a confidence band (shaded area), prediction line (solid line), 889 

and partial residuals (points)  890 

Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate concerning shrub abundance 891 

with the 20 m radius scale. (B) displays the partial residuals of the Pampas gray fox detection rate concerning 892 

grass abundance with the 20 m radius scale. (C) displays the residuals of the Pampas gray fox detection rate 893 

concerning the coverage of open areas with a 50 m radius scale. Plots show the model-predicted values (solid 894 

line), confidence band (shaded area), and partial residuals (points) 895 

Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence concerning shrub abundance 896 

(A) and the percentage of exposed rock (B), both with the 50 m radius scale. Plots show the model-predicted 897 

values (solid line), confidence band (shaded area), and partial residuals (points) 898 

Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning the time of day. For 899 

Geoffroy's cat, there were no significant differences between the different times of day, while for the gray fox, 900 

fewer records were observed during the day. Plots show the model-predicted values (solid line), confidence band 901 

(shaded area), and partial residuals (points) 902 

Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's cat (B) by seasons. No 903 

differences were observed between seasons for the gray fox. For Geoffroy's cat, the highest number of 904 

observations was recorded in winter, followed by spring, with fewer observations in autumn and summer. Plots 905 

show the model-predicted values (solid line), confidence band (shaded area), and partial residuals (points) 906 
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Figure 1
Download TIFF (340.7 kB)

Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos Aires
Province, Argentina. The area outlined in white represents Estancia Paititi, while the black
outline marks the boundaries of the Paititi Private Natural Reserve
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Figure 2
Download TIF (1.71 MB)

Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point
corresponding to a camera trap in Sierra Grande (Paititi Private Natural Reserve) using a
Google Earth image. The contrast is also illustrated between an Acacia
melanoxylon–invaded environment and a natural grassland/shrubland characteristic of the
serrano environment. Map scale = 100 m.
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Figure 3
Download TIF (1.5 MB)

Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging to
the Order Carnivora, considering both environments combined. Plots show a confidence
band (shaded area), prediction line (solid line), and partial residuals (points)
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Figure 4
Download TIF (94.45 kB)

Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate concerning
shrub abundance with the 20 m radius scale. (B) displays the partial residuals of the Pampas
gray fox detection rate concerning grass abundance with the 20 m radius scale. (C) displays
the residuals of the Pampas gray fox detection rate concerning the coverage of open areas
with a 50 m radius scale. Plots show the model-predicted values (solid line), confidence band
(shaded area), and partial residuals (points)
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Figure 5
Download TIF (2.98 MB)

Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence concerning
shrub abundance (A) and the percentage of exposed rock (B), both with the 50 m radius
scale. Plots show the model-predicted values (solid line), confidence band (shaded area),
and partial residuals (points)
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Figure 6
Download TIF (2.92 MB)

Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning the
time of day. For Geoffroy's cat, there were no significant differences between the different
times of day, while for the gray fox, fewer records were observed during the day. Plots show
the model-predicted values (solid line), confidence band (shaded area), and partial residuals
(points)
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Figure 7
Download TIF (2.97 MB)

Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's cat
(B) by seasons. No differences were observed between seasons for the gray fox. For
Geoffroy's cat, the highest number of observations was recorded in winter, followed by
spring, with fewer observations in autumn and summer. Plots show the model-predicted
values (solid line), confidence band (shaded area), and partial residuals (points)
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Figures
Figure 1 - Download source file (340.7 kB)
Fig. 1 The Paititi Natural Reserve is located in the Tandilia Mountain System, Buenos
Aires Province, Argentina. The area outlined in white represents Estancia Paititi, while the
black outline marks the boundaries of the Paititi Private Natural Reserve

Figure 2 - Download source file (1.71 MB)
Fig. 2 Example of making circles of 20 ± 0.5 and 50 ± 0.5 meters radius around the point
corresponding to a camera trap in Sierra Grande (Paititi Private Natural Reserve) using a
Google Earth image. The contrast is also illustrated between an Acacia
melanoxylon–invaded environment and a natural grassland/shrubland characteristic of
the serrano environment. Map scale = 100 m.

Figure 3 - Download source file (1.5 MB)
Fig. 3 Partial residuals of the detection rate of the 4 recorded mammal species belonging
to the Order Carnivora, considering both environments combined. Plots show a
confidence band (shaded area), prediction line (solid line), and partial residuals (points)

Figure 4 - Download source file (94.45 kB)
Fig. 4 Panel (A) shows the partial residuals of the Pampas gray fox detection rate
concerning shrub abundance with the 20 m radius scale. (B) displays the partial residuals
of the Pampas gray fox detection rate concerning grass abundance with the 20 m radius
scale. (C) displays the residuals of the Pampas gray fox detection rate concerning the
coverage of open areas with a 50 m radius scale. Plots show the model-predicted values
(solid line), confidence band (shaded area), and partial residuals (points)

Figure 5 - Download source file (2.98 MB)
Fig. 5 Partial residual plot showing the detection rate of Geoffroy's cat occurrence
concerning shrub abundance (A) and the percentage of exposed rock (B), both with the
50 m radius scale. Plots show the model-predicted values (solid line), confidence band
(shaded area), and partial residuals (points)

Figure 6 - Download source file (2.92 MB)
Fig. 6 Boxplot of detection rate of Geoffroy's cat (A) and Pampas gray fox (B) concerning
the time of day. For Geoffroy's cat, there were no significant differences between the
different times of day, while for the gray fox, fewer records were observed during the day.
Plots show the model-predicted values (solid line), confidence band (shaded area), and
partial residuals (points)

Figure 7 - Download source file (2.97 MB)
Fig. 7 Partial residuals plot of detection rate of the Pampas gray fox (A) and Geoffroy's
cat (B) by seasons. No differences were observed between seasons for the gray fox. For
Geoffroy's cat, the highest number of observations was recorded in winter, followed by
spring, with fewer observations in autumn and summer. Plots show the model-predicted
values (solid line), confidence band (shaded area), and partial residuals (points)
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File 1 - Download source file (14.55 kB)
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File 4 - Download source file (963.78 kB)
Supplementary Material 1: Location of 16 camera traps deployed in spring, summer, and
autumn in the hilly sector of the Paititi Private Nature Reserve (see Appendix 1). Eight
camera traps were placed in acacia forest (CM1, CM2, CM4, CM5, CM6, CMN1, CMN5,
CMN8) and eight in shrubland/grassland (CM7, CM8, CM9, CMN2, CMN3, CMN4,
CMN6, CMN7). Enlarged views highlight CM7 and CMN6 in shrubland/grassland and
CM4 and CMN4 in acacia forest. Map scale (top) = 100 m. All camera traps were spaced
≥100 m apart. Circles in enlarged figures represent a 100 m diameter centered on each
camera. Grayscale image from Google Earth.

File 5 - Download source file (15.26 kB)
Supplementary Material 2: Table containing all species of mammals registered by camera
trapping.

File 6 - Download source file (859.8 kB)
Supplementary Material 3: Photos of the selected camera trap sites are displayed,
showcasing shrubland/grassland in the two top pictures and acacia forest environments
in the two bottom pictures.

File 7 - Download source file (1.96 MB)
Supplementary Material 4: Image taken by a camera trap showing a Geoffroy’s cat
climbing an Australian acacia tree.
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