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Abstract: 
Ecological corridors are essential for maintaining ecosystem functionality, as they facilitate the 
movement of species between protected areas. In the Central Italian Apennines, five corridors have 
been identified to enhance habitat connectivity for the critically endangered Marsican brown bear 
(Ursus arctos marsicanus). This study focuses on two of these corridors to investigate their support of 
other mammal species populations. We collected data from camera traps over four months, and 
applied a Random Encounter Model to estimate the population densities of eight meso- and 
macro-mammal species. We compared the densities we estimated with those reported in the literature 
for different locations across Europe. The results indicated higher-than-average densities for several 
species compared to published data, especially for ungulates. These findings underscore the broader 
importance of Marsican bear corridors, providing important habitats for several mammal species. This 
type of analysis can be replicated in the same area at different times, or in other coexistence corridors 
for large carnivores, to support management strategies. Effective management of these corridors, with 
a focus on reducing human disturbance and improving habitat connectivity, will be critical for the 
long-term survival of both the Marsican bear and its coexisting species. 
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Introduction 23 

Protected areas (PAs) are the cornerstone of biodiversity conservation (Watson et al. 2014), and have 24 

increased rapidly in their global extent, now covering around 16% of the Earth's land surface (UNEP-25 

WCMC & IUCN, 2024). PAs have been effective at preventing the extinction of several species, and 26 

nowadays the populations of many threatened mammal species rely almost entirely on these sites, 27 

while threats such as habitat loss, degradation and fragmentation affect unprotected parts of their 28 

distribution ranges (Pacifici et al. 2020). Yet, even effectively managed PAs might not be sufficient to 29 

preserve species with high spatial requirements, thus maintaining ecological connectivity between PAs 30 

is essential (Hilty et al. 2020). This is the rationale behind the inclusion of ecological corridors within 31 

the 2030 EU Biodiversity Strategy “Legally protect a minimum of 30% of the EU's land areas and 32 

30% of the EU sea area and integrate ecological corridors” (EC 2024). This strategy requires 33 

extending conservation intervention beyond PAs, also focussing on the restoration and maintenance 34 

of habitat corridors between isolated reserves (Fahrig 2003, Pacifici et al. 2020, EC 2022).  35 

Ecological corridors can increase the persistence of species with large spatial requirements, by 36 

allowing migration and dispersal, and they can also help to reduce species’ mortality by facilitating 37 

the avoidance of predation and human disturbance (Curcic and Djurdjic 2013). They became a key 38 

element of conservation and management strategies for endangered mammal species, as they can 39 

mitigate the impact of habitat loss and fragmentation and they can increase the resilience of PAs 40 

networks (Mateo-Sánchez et al. 2014, McGuire et al. 2016). However, the ecological value of a 41 

corridor is species-specific, as corridors intended for one species may not work for other species with 42 

different habitat preferences and movement patterns (Merenlender et al. 2022). The vast majority of 43 

ecological corridors are designed for charismatic and endangered species, which have high 44 

conservation support from stakeholders and citizens (Keeley et al. 2019). Yet, these areas might also 45 

provide important co-benefits for several other species co-occurring with the focal species for which 46 
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the corridor was designed, especially if the former have lower spatial requirements than the latter 47 

(Wang et al. 2018). 48 

The Marsican brown bear (Ursus arctos marsicanus) is a subspecies of the brown bear (Ursus arctos) 49 

and an endemism of the Central Italian Apennines (Ciucci and Boitani 2008). This subspecies is 50 

geographically isolated from other bear populations, and represents one of the most endangered 51 

mammal in Europe, facing severe risk of extinction due to very small population size (Ciucci and 52 

Boitani 2008, Ciucci et al. 2015, Gervasi and Ciucci 2018). While the population is almost entirely 53 

confined within the Abruzzo, Lazio, and Molise National Park (ALMNP), five corridor areas of 54 

suitable habitat have been identified by stakeholders and conservationists to enhance the connectivity 55 

towards critical areas in between PAs (Carotenuto et al. 2014, Ciucci et al. 2016, Ciucci et al. 2017, 56 

Maiorano et al. 2019). These corridors are now the focus of conservation, restoration and rewilding 57 

activities from a group of local NGOs, with the main goal of facilitating bear recolonization of its 58 

former range by reducing the mortality causes outside protected area (Cipollone et al. 2024).  59 

In addition to the Marsican brown bear, the Central Apennines host other charismatic mammal species 60 

(Loy et al. 2019), including endemic subspecies such as the Apennine chamois (Rupicapra pyrenaica 61 

ornata) and the Apennine wolf (Canis lupus italicus), and other species such as the red deer (Cervus 62 

elaphus), the roe deer (Capreolus capreolus) and the porcupine (Hystrix cristata). As all these species 63 

co-occur with the Marsican brown bear, they can in principle benefit from the management of bear 64 

ecological corridors, because several causes of mortality and disturbance operate in a similar way 65 

among species. Indeed, it is possible that these corridors act simultaneously as connectivity areas for 66 

facilitating bear movement and as suitable habitats able to support meta-populations of other mammal 67 

species with lower spatial requirements (Thornton et al. 2016). Despite the high ecological value of 68 

these corridor areas, wildlife populations living within them are understudied. Except for the Marsican 69 

brown bear, most wildlife monitoring is restricted to PAs, with data often unavailable or only traceable 70 

in unpublished reports. 71 
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Here, we aim to estimate the population density of meso- and macro-mammal species within two 72 

Marsican bear corridors in the Central Apennines, an information that is particularly underexplored in 73 

the existing literature. In particular, we aim to provide a baseline estimate of population density 74 

intended to be replicated over time and space, and comparable estimates of these species’ densities 75 

within these corridors. Our goal is to determine if corridors delineated and managed to enhance the 76 

safe movements of the Marsican bear population also serve as ecologically valuable habitats for other 77 

mammal species, thereby having a high conservation value for them. We deployed camera traps to 78 

detect the images of meso- and macro-mammal species with smaller spatial requirements than the 79 

brown bear. Based on data collected, we focus on eight species: European badger (Meles meles), hare 80 

(Lepus spp.), porcupine, red deer, red fox (Vulpes vulpes), roe deer, wild boar (Sus scrofa), and wildcat 81 

(Felis silvestris silvestris). To estimate population densities for each species, we used the Random 82 

Encounter Model (REM; Rowcliffe et al. 2008), one of the most used and robust methods to estimate 83 

population density of unmarked populations of different species (Palencia et al. 2022a).  84 
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Materials and Methods 85 

Study area 86 

Our study area is located in the Central Apennines (Italy) and includes two ecological corridors 87 

designed to enhance the connectivity for the Marsican bear population (Fig. 1). The two corridors 88 

connect the Abruzzo, Lazio and Molise National Park (ALMNP) with the Sirente Velino Regional 89 

Park (Corridor 1) and with the Majella National Park (Corridor 2). These are part of a set of five 90 

corridors identified for the National action plan for the Marsican brown bear protection (PATOM - 91 

Piano d'Azione nazionale per la Tutela dell'Orso Marsicano: VV.AA, 2011 by Ciucci et al. (2016). 92 

Along their extent, the corridors intersect or include additional reserves that contribute to the regional 93 

ecological network, including the Monte Genzana Alto Gizio Natural Reserve (~3,160 ha), the Gole 94 

del Sagittario Natural Reserve (~450 ha), and the Lago di San Domenico Natural Reserve (~60 ha). 95 

The two corridors together cover an area of approximately 265 km2, with Corridor 1 extending for 96 

around 75 km2 and Corridor 2 extending for around 190 km2. Corridor 1 is dominated by grassland 97 

(49%), followed by tree cover (36.5%) and a notable proportion of cropland (8.5%), while elevation 98 

ranges from 472 to 1637 m asl. Instead, Corridor 2 is dominated by tree cover (68%) and grassland 99 

(28.6%), with no significant cropland, and elevation ranging from 449 to 2199 m asl. The climate is 100 

temperate Mediterranean continental, with frequent snowfalls, cold winters and hot summers, with a 101 

temperature ranging between 24°C and 35°C during the sampling period (Fratianni and Acquaotta 102 

2017). 103 
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 104 

Figure 1: Map of the five corridor areas identified in the Central Apennines. The corridors (in red, marked with 105 

numbers) connect four protected areas (other coloured polygons). The study area, covering Corridor 1 and 106 

Corridor 2, is divided into 34 2.5 km grid cells, each including a camera trap (black points).  107 
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Data collection 109 

We placed 34 camera traps from 19/04/2023 to 20/11/2023, for a total of 215 days. We selected this 110 

period to avoid winter season, when mammals are less active and snow and frost would have made 111 

access to many camera trap locations difficult or impossible. We deployed 14 camera traps in Corridor 112 

1 and 20 in Corridor 2, using a random sampling and following a grid with cells of 2.5 km side. The 113 

camera traps were deployed as close as possible to the centroid of each cell, with a maximum distance 114 

from the centroid of 200 metres. Camera traps were placed on trees at a height ranging from 0.5 m to 115 

1.7 m, and facing north orientation, to avoid direct exposure to the sun. We used Browning Patriot 116 

(BTC-PATRIOT-FHD) camera-traps with the following settings: trail mode (i.e., picture mode); 117 

capture delay of 1 seconds; multi shot set on 3 shots; image resolution of 3840 x 2160 (Ultra HD); 118 

night exposure on “mid-range” for confined spaces and “long-range” for open spaces. Checks were 119 

made regularly every three weeks for each camera trap, to control the status of the batteries and SD 120 

cards. During the sampling period, two camera traps were stolen, and replaced approximately 100 121 

metres away from their original locations.  122 

Based on a minimum number of encounters threshold  >20 (Rowcliffe et al. 2008) and thus on the 123 

possibility to derive the needed parameters for the application of REM, we decided to estimate the 124 

density of 8 species of meso- and macro-mammals: European badger, hare, porcupine, red deer, red 125 

fox, roe deer, wild boar, wildcat. Since it was not possible to distinguish the European hare (Lepus 126 

europaeus) from the Apennine hare (Lepus corsicanus) in the images, we refer to the hare as Lepus 127 

spp. We decided to not consider the wolf it in our analysis, because the home range of a wolf pack is 128 

much larger than our study area and a different sampling design would have been needed to estimate 129 

wolf density (Ciucci et al. 1997, Mancinelli et al. 2018). 130 

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

https://www.editorialsystem.com/pdf/download/2638527/71014ab34f1fcb4a89b73b3f647c6ae8/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download DOCX (5.3 MB)

8 

Data processing 131 

We processed camera trap data to calculate density estimates via the  REM, a model that operates with 132 

unmarked animals and estimates their population density in a given area (Rowcliffe et al. 2008). The 133 

model treats animals like ideal gas particles and estimates density within the collective detection 134 

viewsheds of a camera array. REM has been proven to be a reliable method for estimating wildlife 135 

population density in a wide range of situations and scenarios, when using appropriate methods to 136 

estimate parameters and appropriate sampling designs (Palencia et al. 2022). It is also effective for 137 

monitoring more than one species using the same survey design, because for its application it is not 138 

needed for the animals to have a high detection probability (Rowcliffe et al. 2008). We estimated 139 

densities for each corridor separately, and for the entire study area (Corridor 1 + Corridor 2). 140 

The densities are estimated based on different parameters (Fig. 2), which can be measured directly 141 

from the camera trap pictures, without the need of auxiliary data (Caravaggi et al. 2016, Hofmeester 142 

et al. 2017). Parameters estimated include: day range (i.e., the average distance travelled by an 143 

individual during the day, estimated as the product of speed –average travel speed while active–  and 144 

activity rate –proportion of day that the population spent active), the camera traps’ effective detection 145 

zone (EDZ; i.e., the area effectively monitored by cameras, defined by the effective detection radius 146 

– EDR–  and the effective detection angle –EDA), and trapping rates (i.e., the number of independent 147 

encounters per unit time, in particular the number of encounters occurred at least 30 minutes from each 148 

other over the collective time in which the camera traps were operative) (Rowcliffe et al. 2008). To 149 

account for heterogeneity in detection distances across different camera trap models, we estimated 150 

EDR and EDA by extracting the distance and the angle from camera traps of each encounter, and then 151 

by using distance sampling models to find the threshold value at which the expected number missed 152 

within is equal to the expected number detected beyond (Rowcliffe et al. 2011; more details in 153 

Appendix SI). All the parameters were measured by using data from Corridor 1 and Corridor 2 154 
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separately when estimating densities of each corridor, while we considered all the images together in 155 

calculating densities of the entire study area (Corridor 1 + Corridor 2) (Appendix SI, Table S2). 156 

 157 

 158 

Figure 2: Framework of the application of the Random Encounter Model (REM) to estimate the density of the 159 

eight mammal species analysed, in the study area.  160 
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Random Encounter Model application 162 

We applied REM following Palencia (2022b) to estimate the density of each species (D), using the 163 

formula:  164 

 165 

𝐷 =
𝑦

𝑡

𝜋

𝑣𝑟(2+𝑎)
                     [1] 166 

 167 

where y is the number of independent encounters, t is total camera survey effort (in days), v is the 168 

average distance travelled by an individual during a day (i.e., day range, expressed in km/day), and r 169 

and α are the radius (metres) and angle (degrees) of the camera traps detection zone, respectively. For 170 

the wild boar, which is a highly gregarious species, most independent encounters included groups 171 

rather than solitary individuals. As a result, applying the standard REM formula directly yields an 172 

estimate of group density rather than individual density (Rowcliffe et al. 2008). To adjust this, we 173 

multiplied D by the average group size observed in our dataset (�̄� = 3.31 individuals), according to the 174 

following formula: 175 

𝐷𝑖 = 𝐷 × 𝑠                  [2] 176 

Where Di is the individual density, D is the group density estimated using the REM, and �̄� is the 177 

average number of individuals per group. 178 

We also represented the trapping rates estimated for each species in each grid cell.  179 

To allow interpretation of our results, we gathered available information on species density from the 180 

literature. Previous studies have demonstrated that REM results are comparable to those obtained 181 

through other methods when all the parameters (i.e., day range, detection zone and encounter rate) are 182 

estimated accurately (e.g., Palencia et al. 2022a; Santini et al. 2018). We selected references published 183 

from the year 2000 onwards and referring to population densities estimated in Europe, giving priority 184 
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to those estimated in Italy, whenever available. Since it was not possible to consider only densities 185 

estimated with the camera trap method, we took into consideration studies that used different 186 

methodologies. We collected 29 studies that reported population estimates in Europe for recent years 187 

(year 2000 and onwards). Among these, five were literature reviews that reported several density 188 

estimates (Smith et al. 2005, Melis et al. 2009, Lara-Romero et al. 2012, Mattioli et al. 2014). We 189 

found a total of 9 studies that used camera traps to estimate densities, two of which used REM. One of 190 

them is a collection of 19 works using REM to calculate the density of wild boars in different European 191 

areas (ENETWILD-consortium et al. 2022). Except for the Abruzzo Lazio and Molise National Park 192 

(ALMNP) for which we densities of red deer and roe deer were estimated using the pellet count method 193 

(Latini 2019) and the Monte Genzana reserve for which we found red deer estimates from individual 194 

recognition by camera trapping (Fabrizio et al. 2012), we have not found density data within the nearby 195 

PAs. 196 

Covariates extraction and comparison between corridors 197 

We also compared density estimated across corridors. We extracted the values (i.e., mean, median, and 198 

standard deviation) of different environmental covariates within each corridor, to highlight the main 199 

environmental differences between the two areas and therefore better explain the differences in the 200 

density results we obtained. We considered the following covariates: land-cover (i.e., tree cover, 201 

shrubland, grassland, cropland, built up) measured as the percentage values of the classes surface 202 

coverage within corridors, fractal dimension index (dimensionless), elevation (m), slope, distance from 203 

primary roads (m), distance from settlements (m), livestock density measures as livestock units per 204 

hectare (LSU/ha).   205 

We extracted land-cover variables from the European Space Agency (ESA) World Cover portal 206 

(Zanaga et al. 2022). The original raster has a resolution of 10 m, and we resampled it at a resolution 207 

of 30 m to be consistent with other covariates. Fractal dimension index is a fragmentation metric that 208 

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

https://www.editorialsystem.com/pdf/download/2638527/71014ab34f1fcb4a89b73b3f647c6ae8/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download DOCX (5.3 MB)

12 

is based on the area and perimeter of the patch and describes its complexity. It was extracted using the 209 

LecoS plugin on Qgis (3.22.12-Białowieża, 2022; Jung 2016) from the tree cover raster, thus 210 

quantifying the fragmentation of forest habitats. To calculate the statistics for the elevation and the 211 

slope, we downloaded the Digital Elevation Model DEM GLO-30 (Fahrland et al. 2022) for central 212 

Italy from the Nasa Earth Observing System Data and Information System (EOSDIS) and we then 213 

calculated the zonal statistics using Qgis Processing tools. Using Qgis, we calculated the Euclidean 214 

distance of each camera trap to the nearest village. To calculate the distances of each camera trap from 215 

the primary roads, we used the roads’ shapefile downloaded from “OpenstreetMap” (Curran et al. 216 

2013). We calculated the livestock density in Corridor 1 and Corridor 2 using the dataset of Dragonetti 217 

et al. (2025).   218 
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Results 219 

Estimating model parameters 220 

We collected a total of 3,942 pictures of 15 species of wild mammals, including 3,379 pictures of our 221 

8 study species (Table S1). We found high variability in the estimate of day range among species – 222 

i.e., the average distance that animals travel in a day – with values ranging from 5.91 km/day (SE = 223 

0.89) for the European hare to 16.21 km/day (SE = 1.49) for the red fox (Table S2). The trapping rate 224 

(i.e., the number of independent encounters over time) varied widely in the study area, both among 225 

species and between the two corridors (Fig. 3, Table S3). The porcupine and the wildcat were not 226 

detected in several cells and showed the lowest trapping rates (mean = 0.02 ± 0.05 encounters per day 227 

for porcupine; mean = 0.01± 0.02 for wildcat). Conversely, the red deer and roe deer were detected in 228 

all cells and showed the highest trapping rates (mean = 0.21 ± 0.22 and mean = 0.21 ± 0.16, 229 

respectively). The wild boar was also detected in the entire study area except two cells of corridor 2, 230 

with a mean trapping rate = 0.08 ± 0.12, and showing high values in some locations (i.e., 0.50 in 231 

“Marsicana” and 0.47 in “Anversa”). The red fox showed trapping rates greater than 0 in all the cells 232 

of corridor 1 but not in all cells of corridor 2, with a mean of 0.10 ± 0.11 in the whole study area. 233 

Notably, the porcupine was only detected in three locations of Corridor 2: "Anversa" (0.27), "Lago di 234 

San Domenico'' (0.05) and "Valle Santa Margherita" (0.04).  235 
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 236 

Figure 3: Trapping rates of each camera trap location of the study area, for each of the eight species of meso- 237 

and macro-mammals analysed (panels a-h). Trapping rates were obtained from the number of independent 238 

encounters divided by survey effort (i.e., the operating time of camera traps expressed in days). 239 
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Species density estimates 240 

The wild boar showed the highest density in the overall study area (7.22 ± 1.75 ind./km2), followed 241 

by the roe deer (3.41 ± 0.70 ind./km2) and the hare (3.39 ± 0.86 ind./km2; Table 1). Instead, the wildcat 242 

and the red fox were the species with the lowest densities (0.43 ± 0.17 ind./km2 and 1.27 ± 0.27 243 

ind./km2, respectively). For the wildcat, reliable estimates could only be obtained for the entire study 244 

area, due to an insufficient number of images for each separate corridor. To aid interpretation of our 245 

results, we compared the population densities estimated in our study area with those found in the 246 

literature (Table 1, Table S4).  247 

We found that all the densities we estimated were comparable to the data collected from the literature. 248 

While important for results interpretation, it is important to clarify that this is not a formal comparison 249 

of densities inside vs outside corridors, as the study design behind different estimates was not the same 250 

(see Discussion). 251 

Comparison between the two corridors and covariates extraction 252 

The analysis of environmental covariates revealed that Corridor 1 is, on average, more cultivated, more 253 

built, more densely grazed and less forested than Corridor 2. The fractal dimension index (i.e., 254 

fragmentation of forested habitats) was also higher in Corridor 1. Corridor 2, on average, showed a 255 

higher altitude and slope. Additionally, the camera traps in Corridor 1 were generally closer to primary 256 

roads than those in Corridor 2, but almost at the same distance from the nearest village (Fig. S2).  257 

These environmental differences between the two corridors are also reflected in different estimates of 258 

population density for several species (Table 1, Fig. S3). In Corridor 1, species with the highest density 259 

included the wild boar (14.21 ± 4.64 ind./km2), the badger (4.73 ± 2.05 ind./km2) and the roe deer 260 

(4.67 ± 1.47 ind./km2). In Corridor 2, species with the highest density included the hare (3.60 ± 2.96 261 

ind./km2), the red deer (3.36± 1.50 ind./km2) and the roe deer (2.94 ± 0.68 ind./km2). We found 262 

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

https://www.editorialsystem.com/pdf/download/2638527/71014ab34f1fcb4a89b73b3f647c6ae8/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download DOCX (5.3 MB)

16 

Corridor 1 showing higher densities than Corridor 2 for all species except the hare (that however 263 

showed similar estimate across corridors). Some of the most notable examples were the wild boar 264 

(14.21 ± 4.64 ind./km2 in Corridor 1 vs 1.69 ± 0.71 ind./km2 in Corridor 2), the badger (4.73 ± 2.05 265 

ind./km2 in Corridor 1 vs 1.03 ± 0.34 ind./km2 in Corridor 2) and the red fox (2.65 ± 0.63 ind./km2 in 266 

Corridor 1 vs 0.49 ± 0.14 ind./km2 in Corridor 2). For the wildcat, data were not sufficient to estimate 267 

the densities for the two corridors separately.  268 
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Table 1. Density estimates and standard errors (S.E.) derived from the application of Random Encounter Model 269 

(REM), for eight species of meso- and macro-mammals. Densities of all species are reported separately for 270 

Corridor 1, Corridor 2, and for the whole study area, with the exception of the wildcat (Felis silvestris silvestris) 271 

which could only be reported for the whole area. The last column refers to the other densities found from the 272 

literature.  273 

 

Species 
Corridor 1 

(ind./km2) 

Corridor 2 

(ind./km2) 

Corridor 1+2 

(ind./km2) 

Literature values 

(ind./km2) 

European badger 

(Meles meles) 
4.73 ± 2.05 1.03 ± 0.34 1.83 ± 0.82 

Min: 0.26 

Max: 3.81 

Median: 0.85 

Hare 

(Lepus spp) 
3.22 ± 1.58 3.60 ± 2.96 3.39 ± 0.86 

Min: 0.0023 

Max: 82 

Median: 9.15 

Porcupine 

(Hystix cristata) 
1.84 ± 0.68 1.08 ± 0.67 1.40 ± 0.47 

Min: 0.44 

Max: 0.49 

Median: 0.46 

Red deer 

(Cervus elaphus) 
3.36±1.50 2.71 ± 0.99 3.16 ± 0.92 

Min: 1.72 

Max: 8.5 

Median: 2.85 

Red fox 

(Vulpes vulpes) 
2.65 ± 0.63 0.49 ± 0.14 1.27 ± 0.27 

Min: 0.21 

Max: 4.4 

Median: 0.66 

Roe deer 

(Capreolus capreolus) 
4.67 ± 1.47  2.94 ± 0.68 3.41 ± 0.70 

Min: 0.11 

Max: 53.8 

Median: 15.45 

Wild boar 

(Sus scrofa) 
14.21 ± 4.64 1.69 ± 0.71 7.22 ± 1.75 

Min: 0.35 

Max: 47 

Median: 6.54 

Wildcat 

(Felis silvestris 

silvestris) 

NA NA 0.43 ± 0.17 

Min: 0.069 

Max: 1.36 

Median: 0.33 
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Discussion 275 

We estimated the densities of eight meso- and macro-mammal species in two areas of the 276 

Central Apennines managed as connectivity corridors for the Marsican bear by local 277 

administration and NGOs (Ciucci et al. 2016, Maiorano et al. 2019, Cipollone et al. 2024). Our 278 

results on mammal density constitute important knowledge, since this information is especially 279 

scarce in our study area and, overall, in the Central Apennines. We estimated densities both at 280 

the individual corridor level and for the entire study area, and we compared these with density 281 

values from other European areas, to contextualize and validate our results, and to identify 282 

species with existing population data from nearby protected areas. We found that the densities 283 

we estimated are on average higher than those found in the literature, suggesting that these bear 284 

corridors host areas of high ecological value for several other mammal species.  285 

The comparison between the two corridor areas allowed us to understand which environmental 286 

conditions could favour the presence of the species analysed. Corridor 1 showed higher density 287 

values than Corridor 2 for almost all species. Species that showed the greatest differences 288 

between corridors were the European badger, the red fox, the wild boar and the roe deer. The 289 

greater presence of badgers in Corridor 1 than in Corridor 2 is certainly something to further 290 

investigate, as this species is known to prefer forested environments rather than shrubland and 291 

grassland or cultivated fields, which are more present in Corridor 1 (Rosalino et al. 2008, 292 

Chiatante et al. 2017). Species such as foxes and wild boars could benefit from the more 293 

widespread (albeit not intense) anthropic presence in Corridor 1, being high generalists. 294 

Conversely, the roe deer could benefit from mosaic spaces with a high ecotone index 295 

characterised by the continuous alternation of open environments with herbaceous vegetation 296 

and broad-leaved woods, typical of Corridor 1. Corridor 1 showed a slightly higher grazing 297 

pressure than Corridor 2, placing it within the category of semi-natural habitats shaped by 298 

extensive grazing (Dragonetti et al. 2025). These habitats play a key role in maintaining open 299 
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landscapes and supporting biodiversity, particularly species that thrive in ecotonal and 300 

transitional zones. This is consistent with the higher forest fragmentation observed in the area, 301 

as grazing helps prevent woodland encroachment (Falcucci et al. 2007; Ponzetta et al. 2010). 302 

In addition, the lower altitude and slope of Corridor 1 could favour most of the species 303 

analysed, as they are not strictly mountainous or alpine species. 304 

The three species of ungulates (i.e., roe deer, red deer, wild boar) showed the highest densities 305 

and the highest trapping rates. This is consistent with the trend of the last few years in Italy, 306 

which sees these species expanding their ranges and increasing their population numbers 307 

(Rondinini et al. 2022). Italian ungulates are mostly represented by opportunistic and generalist 308 

species. As they can adapt to several ecological conditions, they have exploited the massive 309 

abandonment of mountains and hills by humans in the last decades in the internal areas of Italy 310 

which facilitated the expansion of the woodlands  (Acevedo et al. 2011, Falcucci et al. 2007, 311 

Valente et al. 2020). While we could not obtain a reliable density estimate of the wildcat in 312 

each corridor, but just for the whole area, Corridor 2 showed higher trapping rates than Corridor 313 

1 which seem to indicate higher suitability (Fig. 3). However, a more extensive camera trapping 314 

design would be required to validate this hypothesis.  315 

A potential limitation of our estimates concerns the selected sampling period (19 April – 20 316 

November), which excludes the winter season. This may have led to seasonally biased species 317 

activity rates and detection probabilities. However, the REM framework is designed to account 318 

for such variation: a lower trapping rate due to reduced activity should be balanced by a 319 

correspondingly shorter day range, resulting in broadly consistent density estimates.  320 

Density estimates for individual species 321 

We found our estimates aligning with, or even exceeding, previously reported values in the 322 

literature for almost all species (see Appendix SII for additional discussion). We decided to 323 
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compare our results with densities estimated with other methods when REM estimates were 324 

not available, as unbiased densities are obtained when REM parameters are calculated 325 

accurately (Palencia et al. 2022a; Santini et al. 2018). By comparing our values with other 326 

estimates reported in the literature we aimed to place our findings within a broader range of 327 

known population densities, assess their reliability, and identify which species have been 328 

studied in nearby protected areas. 329 

For the European badger, our estimated density (1.83 ± 0.82 ind./km²) was higher than average 330 

but still comparable to other European studies that employed camera traps (Lara-Romero et al. 331 

2012). Although Italy lacks comprehensive data on badger populations, one study in the river 332 

Po plain using camera traps reported lower densities (0.93–1.4 ind./km²) in hilly regions 333 

(Balestrieri et al. 2016).  334 

Regarding the hare, we estimated a density of 3.39 ± 0.86 ind./km², which is on the lower end 335 

compared to other European estimates (5.6 ind./ km² to 82 ind./ km² ) (Smith et al. 2005), even 336 

if most of these studies used old methods, such as transect counts or spotlight surveys. The 337 

only other study conducted in Italy (Genghini and Capizzi 2005) reported much lower hare 338 

densities (0.0027 ± 0.0007 ind./km²).  339 

For porcupines, our density estimate (1.40 ± 0.47 ind./km²) was higher than most reported in 340 

the literature (e.g., 0.49 ind./km² in Lombardy - Palencia et al. 2024). This difference is likely 341 

due to our study area being located within the core range of the species, whereas Lombardy is 342 

probably still at the periphery of the porcupine's current distribution. The species is currently 343 

undergoing a range expansion, facilitated by habitat changes such as global warming and 344 

agricultural abandonment (Mori et al. 2021).  345 

Results for ungulates were mixed. Our red deer density (3.16 ± 0.92 ind./km²) closely matched 346 

previous estimates for central Italy and aligned with estimates from the ALMNP, where a pellet 347 

count survey recorded a density of 3.8 ind./km² (Latini 2019). We also found estimates from 348 
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the Monte Genzana Alto Gizio Reserve, where individual recognition through camera trapping 349 

led to an estimated density of 1.3–2.5 ind./km² (Fabrizio et al. 2012). In contrast, roe deer 350 

density in our study (3.41 ± 0.70 ind./km²) fell within the medium-to-low range of European 351 

estimates (0.11 – 53.80 ind./km²) (Melis et al. 2009). Lower roe deer densities are expected in 352 

areas such as our study site, where high predator presence tend to limit roe deer populations. 353 

In contrast,  areas with no predators, such as Ticino National Park,  report much higher densities 354 

(30.7 ind./km² - De Pasquale et al. 2019). Comparing our estimate with a regional one, we 355 

found an average density of roe deer of 0.5 ind./km2 (95% CI = 0.4-0.6) within the ALMNP 356 

(Latini 2019), calculated with the pellet count method, with higher densities recorded in the 357 

peripheral layers, close to our study area (0.94 ind./km2, 95% CI= 0.22- 8.15).  358 

For wild boar, our estimated density (7.34 ± 1.78 ind./km²) was consistent with other studies 359 

that adopted REM (from 0.35 ind./km² in Croatia to 15.25 ind./km² in Italy: ENETWILD-360 

consortium et al. 2022). Due to their high reproductive rate, migratory behaviour, and 361 

adaptability to various habitats, wild boar have a density that is notoriously difficult to estimate 362 

accurately (ENETWILD-consortium et al. 2018). However, the high trapping rate of wild boars 363 

in our study suggested a genuinely high density in the area, in line with European trends, where 364 

wild boar numbers have steadily increased in the last decades (Massei et al. 2015).  Wild boars 365 

are highly adaptable compared to other ungulates, being omnivorous and modifying their diet 366 

based on locally available resources, showing high reproductive rates, and the ability to adapt 367 

in a wide range of habitats, from forests to agricultural areas (Colomer et al. 2024). 368 

Our density estimate of the red fox (1.27 ± 0.27 ind./km²) was on the higher end compared to 369 

other European studies (e.g., 0.23-1.62 ind./km² in the Mediterranean area - Jimenez et al. 370 

2019). We found Corridor 1 had more than twice the fox density of Corridor 2, likely due to 371 

its greater degree of human presence and lower elevation. Red foxes, being highly adaptable 372 

and able to live in human-dominated landscapes, benefit from such conditions (Alexandre et 373 
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al. 2020).  374 

For the wildcat, we estimated a density of 0.43 ± 0.17 ind./km², consistent with previous 375 

European studies that used camera traps. For example, Anile et al. (2014) found similar 376 

densities (0.32–1.36 ind./km²) in Sicily using different methods, including REM. Other studies 377 

in mountainous regions (Maronde et al. 2020, Fonda et al. 2022) reported comparable densities 378 

(0.26 and 0.35 ind./km²) using camera traps.  379 

Management and research implications  380 

Our work demonstrated that ecological corridors defined for the Marsican bear host high 381 

densities of several other mammal species, highlighting the crucial role that these areas play in 382 

supporting mammalian biodiversity in the Central Apennines. Albeit not formally comparable 383 

due to different analytical protocols, REM densities of the ungulates (roe deer, red deer and 384 

wild boar) were similar to the ones found in literature. In particular, the densities of red deer 385 

and roe deer were close to the ones in the nearby PAs, further emphasizing their conservation 386 

value and the importance of dedicated management strategies.  A focus of future studies could 387 

be a formal comparative study in nearby PAs using the same methods we deployed in corridor 388 

areas, that we were unable to conduct due to strict park protection policies, difficulties in 389 

availability of data and the significantly larger sampling effort required. In this sense, our 390 

results provide an important baseline to enable comparative studies. Similarly, the protocol 391 

presented here should be replicated regularly in the same study area, to allow for the detection 392 

of trends in densities and the investigation of correlations between management activities that 393 

have recently started in the corridors to enhance bear conservation  and the density of non-394 

target species (Cipollone et al. 2024). Analyses similar to those we presented here can support 395 

management in other co-existence corridors and for other large carnivores. This could be the 396 

case, for example, of the Iberian Peninsula, where two separate brown bear populations live in 397 
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the Cantabrian Mountains and the Pyrenees, coexisting with human activities (Pérez et al. 2010, 398 

Méndez et al. 2014). Our analysis also highlighted marked differences between the two 399 

corridors, with Corridor 1 showing higher densities for almost all species. This finding is 400 

particularly relevant for land management, as it suggests that many species can benefit from 401 

certain forms of human activity, such as extensive agriculture and traditional pasture, when 402 

carried out in a non-intensive way (Halada et al. 2011; Schieltz & Rubenstein 2016). 403 

We found that the porcupine and the ungulates are present with particularly high densities in 404 

the bear corridors. Human-wildlife conflict, due to the frequent use by these species of 405 

agricultural lands for foraging, increases tensions with local communities. In this sense, it is 406 

essential to monitor the population development of those species over an extended time (White 407 

and Ward 2010), while the installation of electric fences, already recommended for mitigating 408 

bear-human conflicts in the LIFE project “Bear-Smart Corridors” (Cipollone et al. 2024), could 409 

be effective in preventing also damages from porcupines. Moreover, compensation schemes 410 

and community engagement initiatives could foster coexistence, reducing the negative impacts 411 

of wildlife on human livelihoods while promoting the ecological benefit of maintaining healthy 412 

mammal populations.  413 

Since bear corridors are of great importance for the entire community of meso- and macro-414 

mammals, management strategies should focus on maintaining and enhancing their ecological 415 

connectivity, facilitating species movement and dispersal beyond PAs (Fahrig 2003, Pacifici et 416 

al. 2020). This is in line with the Kunming-Montreal Global Biodiversity Framework and the 417 

EU Biodiversity Strategy both of which emphasize the need for ecological corridors to connect 418 

fragmented habitats (EC 2022). Likewise, this goal is in line with the 2030 EU Biodiversity 419 

Strategy and the Italian National Strategy for Biodiversity 2030, which stress the importance 420 

of integrating ecological corridors to link isolated PAs (EC 2020, MASE 2023). Thus, the 421 
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management of these corridors must reduce human-induced pressures, for instance by 422 

mitigating road impact with strict regulation of vehicular access on dirt roads and critical areas 423 

during sensitive periods for the bears such as the mating season (Ciucci et al. 2016). Wildlife 424 

mortality due to road accidents along main roads can be limited by measures such as road 425 

signals and awareness campaigns implemented in projects like LIFE "Strade", which are 426 

crucial in Central Apennine corridors (Giovacchini and Fabrizio 2022; Valfrè and Cipollone 427 

2016). 428 

Our findings imply that conservation actions intended for enhancing habitat connectivity for 429 

the Marsican brown bear could also be effective for other species in the area,  thereby having 430 

an “umbrella” effect. These actions will ensure the long-term survival of the Marsican bear and 431 

other mammal species that rely on these critical habitats (either for movement and survival).  432 
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Figures captions 452 

Figure 1: Map of the five corridor areas identified in the Central Apennines. The corridors (in red, 453 

marked with numbers) connect four protected areas (other coloured polygons). The study area, 454 

covering Corridor 1 and Corridor 2, is divided into 34 2.5 km grid cells, each including a camera trap 455 

(black points).  456 

 457 

Figure 2: Framework of the application of the Random Encounter Model (REM) to estimate the density 458 

of the eight mammal species analysed in the study area.  459 

 460 

Figure 3: Trapping rates of each camera trap location of the study area, for each of the eight species 461 

of meso- and macro-mammals analysed (panels a-h). Trapping rates were obtained from the number 462 

of independent encounters divided by survey effort (i.e., the operating time of camera traps expressed 463 

in days). 464 
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Figure 1
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Map of the five corridor areas identified in the Central Apennines. The corridors (in red,
marked with numbers) connect four protected areas (other coloured polygons). The study
area, covering Corridor 1 and Corridor 2, is divided into 34 2.5 km grid cells, each including a
camera trap (black points).
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Figure 2
Download JPG (151.46 kB)

Framework of the application of the Random Encounter Model (REM) to estimate the density
of the eight mammal species analysed in the study area.
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Figure 3
Download PNG (309.9 kB)

Trapping rates of each camera trap location of the study area, for each of the eight species
of meso- and macro-mammals analysed (panels a-h). Trapping rates were obtained from the
number of independent encounters divided by survey effort (i.e., the operating time of
camera traps expressed in days).
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