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Abstract: 
Road infrastructure significantly impacts ecosystems, with road-associated environmental changes 
posing challenges to biodiversity conservation. However, certain elements of road infrastructure may 
offer unintended ecological benefits. In this study, we assessed the role of stormwater ponds located 
along motorways and expressways in eastern Poland as habitats for bats. We compared bat species 
richness and echolocation activity between sites with (38) and without (33) these artificial water 
bodies. Bats were detected at 83.1% of the surveyed sites, with six species recorded, the most 
common being Cnephaeus serotinus and Nyctalus noctula. Species richness and echolocation activity 
were both positively associated with pond surface area, while other habitat variables had no significant 
effect. The results suggest that  stormwater ponds may enhance bat presence by providing drinking 
water, increased insect abundance, and open foraging space. Nevertheless, such ponds may also 
pose risks due to their proximity to roads, potentially creating ecological traps and increasing the 
likelihood of bat–vehicle collisions. Future research should evaluate mortality rates, seasonal 
dynamics, insect availability, and water quality to better understand the dual role of stormwater ponds 
as both resources and potential hazards. Our study highlights the importance of integrating artificial 
water bodies into conservation planning to enhance biodiversity within road-dominated landscapes. 
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Abstract 

Road infrastructure significantly impacts ecosystems, with road-associated environmental 

changes posing challenges to biodiversity conservation. However, certain elements of road 

infrastructure may offer unintended ecological benefits. In this study, we assessed the role of 

stormwater ponds located along motorways and expressways in eastern Poland as habitats for 

bats. We compared bat species richness and echolocation activity between sites with (38) and 

without (33) these artificial water bodies. Bats were detected at 83.1% of the surveyed sites, 

with six species recorded, the most common being Cnephaeus serotinus and Nyctalus noctula. 

Species richness and echolocation activity were both positively associated with pond surface 

area, while other habitat variables had no significant effect. The results suggest that  

stormwater ponds may enhance bat presence by providing drinking water, increased insect 

abundance, and open foraging space. Nevertheless, such ponds may also pose risks due to 

their proximity to roads, potentially creating ecological traps and increasing the likelihood of 

bat–vehicle collisions. Future research should evaluate mortality rates, seasonal dynamics, 

insect availability, and water quality to better understand the dual role of stormwater ponds as 

both resources and potential hazards. Our study highlights the importance of integrating 

artificial water bodies into conservation planning to enhance biodiversity within road-

dominated landscapes. 

 

Keywords: artificial water bodies, road ecology, biodiversity conservation, habitat use, 

motorway ecology 
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Introduction 

Road infrastructure plays a crucial role in driving socio-economic growth and development 

(Palei 2015). A lack of well-developed infrastructure can significantly hinder economic 

progress. Furthermore, an even distribution of infrastructure contributes to balanced regional 

development and reduces socio-economic disparities between states and regions (Zhang et al. 

2017). Current global estimates suggest that there are approximately 21.6 million kilometers 

of roads globally, with projections indicating a further 14–23% increase in road length by 

2050. Most of this expansion is expected in Africa, South and East Asia, and South America 

(Meijer et al. 2018). Alarmingly, much of the projected growth is expected in biodiversity 

hotspots such as the Amazon Basin, where road construction frequently coincides with 

logging and land conversion, leading to forest fragmentation and ecological degradation 

(Laurance et al., 2014). In Brazil alone, the Amazon road network expanded by nearly 17,000 

kilometers per year between 2004 and 2007 (Fraser, 2014). Among various types of road 

infrastructure, highways and expressways are particularly significant due to their role in 

facilitating rapid transportation and connectivity (Lewis 1997, Alcock et al. 2012). 

However, road construction and use entail considerable environmental costs, posing 

significant ecological threats. Increased emissions of greenhouse gases, air pollutants such as 

carbon dioxide and nitrogen oxides, along with fine particulate matter, contribute to climate 

change and human health problems (Banister et al. 2011, Stanley et al. 2011). Beyond their 

impact on humans, roads also profoundly affect wildlife populations, making them one of the 

most pressing contemporary conservation concerns (Trombulak and Frissell 2000, Benítez-

López et al. 2010). Roads lead to habitat loss and fragmentation, as well as pollution through 

light, noise, and chemicals contaminants, altering animal movement patterns and population 

dynamics (Coffin 2007, Goosem 2007, Barbosa et al. 2020). Perhaps the most conspicuous 

and direct consequence for wildlife is vehicle collisions (Orłowski 2008, Pagany 2020). For 

example, in North America, badgers (Taxidea taxus) have been observed using road corridors 

to traverse fragmented landscapes, while simultaneously avoiding roads with high traffic 

volumes (Sunga et al., 2017). Similarly, road networks frequently disrupt migration routes for 

large ungulates worldwide (Benítez-López et al. 2010, D’Amico et al. 2016). 

Interestingly, certain elements of road infrastructure can provide unintended benefits 

for wildlife (Underhill and Angold 1999). One such feature are stormwater ponds, which are 

constructed alongside highways and expressways to manage runoff and trap pollutants, 

including heavy metals, hydrocarbons, nutrients, salts, and pesticides. These ponds facilitate 

the accumulation of sediments and contaminants before water infiltrates into the ground or is 
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discharged into natural water bodies (Barrett et al. 1998; Davis et al. 2001). These ponds have 

been shown to promote biodiversity (Brittain et al. 2017, Sun et al. 2018, Meland et al. 2020). 

They serve as important breeding grounds for amphibians, particularly in the context of the 

rapid drainage of agricultural landscapes and the global loss of wetland habitats (Scher et al. 

2004, Le Viol et al. 2012). Additionally, they provide key habitats for aquatic insects, such as 

Odonata (Ołdak 2022, Šigutová et al. 2022), and support a variety of other taxa (review in 

Dixon et al. 2022). Despite their ecological  value, stormwater ponds may also act as  

ecological traps - like many other human-made structures - by attracting wildlife with 

misleading environmental cues that mask suboptimal or hazardous conditions due to pollutant 

accumulation (Clevenot et al. 2018, Holzinger et al. 2023). The build-up of heavy metals and 

organic pollutants in pond sediments can have long-term negative effects on aquatic 

organisms, and both metals and polycyclic aromatic hydrocarbons (PAHs) are known to 

bioaccumulate readily (Grung et al. 2016). In a study on lesser treefrogs (Dendropsophus 

minutus) inhabiting roadside stormwater ponds, individuals exhibited increased DNA damage, 

a higher lymphocyte-to-neutrophil ratio, reduced hepatic melanin, smaller locular areas in the 

gonads, and decreased diameters of secondary spermatocytes and spermatogonia. Overall, 

frogs from highway-adjacent sites exhibited a greater prevalence of physiological 

abnormalities than those from protected natural habitats, likely reflecting increased 

environmental stress from traffic-derived pollutants (Benvindo-Souza et al. 2025). Similarly, 

dragonfly larvae inhabiting such ponds displayed DNA damage that was strongly correlated 

with PAH and zinc concentrations in the sediment (Meland et al. 2019). 

Water bodies are known to influence bat species richness and activity. They provide 

drinking water for bats and support higher insect abundances, thereby creating attractive 

foraging habitats (Russo and Jones 2003, Russo-Petrick and Root 2023). Furthermore, calm 

water surfaces offer a less cluttered acoustic signal return from echolocation pulses, 

facilitating more efficient prey detection (Siemers et al. 2001). In Europe, several bat species 

rely on aquatic habitats: Myotis spp. are specialists of these environments, while others, such 

as Pipistrellus spp. and Nyctalus spp., frequently forage and drink in riparian habitats (Korine 

et al. 2016). Bats have been observed utilising various types of ponds (Lisón and Calvo 2014, 

Ancillotto et al. 2019). Given this, stormwater ponds adjacent to motorways and expressways 

may also provide suitable foraging and drinking habitats for bats. However, despite extensive 

research on the broader impacts of roads on bats - predominantly negative due to vehicle 

collisions and traffic noise that hinders hunting (Lesiński et al. 2011, Abbott et al. 2012, 
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Devaux et al. 2024) - there is a striking lack of studies investigating the importance of these 

artificial reservoirs for bats. 

The aim of our study was to evaluate the significance of stormwater ponds located 

along motorway and expressways in eastern Poland as foraging habitats for bats. Specifically, 

we compared bat species richness and activity at sites with stormwater ponds to sites without 

such ponds. We hypothesised that stormwater ponds positively influence both bat species 

richness and activity. Additionally, we accounted for the role of nearby habitats, such as 

woodlots and settlements, which are known to affect bat activity (Ancillotto et al. 2019). 

Understanding the habitat characteristics that drive bat presence and activity near these ponds 

could inform future conservation and management efforts. Since stormwater ponds were 

initially designed for technical purposes but have been naturally colonised by wildlife, it is 

important to maintain them in conditions that maximise their ecological value. However, 

because their primary role is to retain and remediate polluted runoff, studies - as noted above - 

have highlighted their potential to act as ecological risks for amphibians, invertebrates, and 

potentially foraging vertebrates due to pollutant accumulation. Therefore, a comprehensive 

assessment of both their ecological benefits and risks is crucial when considering their role in 

biodiversity conservation. 

 

Materials and Methods 

Study Area 

The study was conducted in east-central Poland along a major transport corridor connecting 

Warsaw, Siedlce, Ostrów Mazowiecka, and Lublin. This route comprises one highway (A2) 

and two expressways (S8 and S17), spanning a total length of approximately 200 km. These 

roads traverse diverse landscapes predominantly composed of arable fields and meadows, 

with forested sections accounting for no more than 10% of the total study area (Fig. 1). The 

regional climate is characterised by an average annual temperature of 10 °C and annual 

precipitation of approximately 550 mm. During the sampling period (June - July 2023), the 

average mean temperature across both months was  18.4 °C, and the total precipitation 

reached 53 mm (climatic data from Siedlce town, https://en.tutiempo.net/). 

 

Study Design 

The research was conducted in June and July 2023, coinciding with the breeding and 

offspring-rearing period for bats in Poland (Sachanowicz and Ciechanowski 2005). Each 

recording day, we surveyed specific road sections to select suitable recording locations. 
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Sampling focused exclusively on stormwater ponds intentionally constructed for drainage 

along the highway and expressway network. In Poland, the construction of such retention 

reservoirs is regulated by national water legislation and road engineering guidelines. These 

reservoirs are designed to ensure sufficient retention capacity, taking into account rainfall 

intensity, catchment characteristics, and environmental protection requirements. Typically, 

their surface areas range from several hundred to several thousand square meters, with 

spacing along roads varying from a few hundred meters to several kilometers (Marszelewski 

et al. 2024). Only ponds visibly holding water at the time of survey were included in the 

study. Additionally, control sites were selected along the same road sections, ensuring the 

absence of any visible water bodies or drainage features within a 100 m radius. All sites were 

at least 500 m apart, and travel between them was conducted by car to minimise the time and 

risk of recording the same individuals at multiple locations. In total, 71 sites were inspected, 

comprising 38 locations with ponds and 33 non-pond (control) sites. 

Bat activity was measured by placing the detectors on a tripod at a height of 1.5 m. 

Acoustic monitoring was performed for a single 15-minute session at each site, commencing 

at sunset and continuing until 02:00 h. Sampling was conducted only once per site. To control 

for temporal variability, pond and control sites were sampled alternately within each night to 

ensure comparable environmental conditions. Bat recordings were not conducted during 

periods of precipitation, wind speeds ≥10 km/h, or temperatures <10 °C, as these conditions 

have been shown to significantly affect bat activity levels (Johnson et al. 2008). 

 

Bat Activity Measurement 

Acoustic monitoring is widely recognised as a reliable method for assessing bat activity (Frick 

2013, Fraser et al. 2020). Bat activity was recorded using two types of detectors operating 

simultaneously to enhance data reliability. Primary recordings were obtained using a 

Batcorder 3.1 (ecoObs GmbH), configured with the following settings: quality = 20, threshold 

= 27 dB, post-trigger = 400 ms, and critical call frequency = 16 kHz. The software 

bcDiscriminator (bcAnalyze 4.0, ecoObs GmbH, Nürnberg, Germany) was used for automatic 

bat species identification based on echolocation calls, ensuring the exclusion of non-bat calls. 

Bat activity was quantified as the number of echolocation calls recorded per 15-minute 

session at each site. Species identifications performed by bcIdent with a probability ≥90% 

were considered statistically valid. We did not analyse call sequences for feeding buzzes; 

therefore, activity values should be interpreted as indicative of general activity rather than 

confirmed foraging. 
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Simultaneously, bat echolocation calls were also recorded using a ultrasound detector 

model D230 (Pettersson Elektronic AB, Upsala, Sweden) in broadband frequency division 

mode (10–120 kHz), connected to a Marantz PDM620 digital recorder (Marantz America, 

Mahwah, USA). The recordings from the D230 detector served as supplementary data, 

addressing the limitations of the Batcorder 3.1, which did not always allow for unambiguous 

species identification. Additionally, the D230 detector was capable of detecting bat calls from 

greater distances, beyond the range of the Batcorder 3.1 (only data that did not duplicate 

recordings from Batcorder 3.1 were included in the analysis). For the Pettersson D230, bat 

activity was quantified as the number of bat passes per 15-minute session. We defined bat 

passes as either ≥ two call pulses per at least 2 ms of duration or a single call pulse per at least 

5 ms (see Weller and Baldwin 2012). The recorded echolocation calls were subsequently 

analysed using BacScan 9 software, which facilitated the generation of spectrograms to aid in 

species identification. 

 

Data Processing and Statistical Analyses 

Sampling site coordinates were uploaded into QGIS (ver. 3.22) as a point layer. A 100 m 

radius buffer was created around each site to characterise the surrounding land cover (see 

Table 1). Within each buffer, the surface areas of roads, open fields, forests, and built-up 

areas (including villages, farmsteads, and building clusters) were calculated. The number of 

isolated trees and length of treelines were also recorded. Additionally, using recent satellite 

imagery (Landsat 8 images viewed via Google Earth), we measured the distance from each 

site to the nearest forest (min. 1 ha) and the nearest built-up area. These habitat types were 

included as potential bat roosting sites whose proximity could influence bat activity. Due to 

the fragmented nature and small patch sizes of local forests, we did not distinguish between 

forest types. The area of each stormwater pond was also measured, and all ponds were small 

enough to fit entirely within the 100 m buffer.  While this radius was selected to capture 

immediate habitat features influencing bat activity, we acknowledge that species with 

extensive home ranges (e.g., Nyctalus noctula) may forage over much larger areas 

(Sachanowicz and Ciechanowski 2005). 

Statistical analyses were conducted using R 4.3.3 (R Core Team 2023) to evaluate the 

influence of environmental factors (see Table 1) on bat species richness and activity, with a 

particular focus on the role of pond surface area. Two separate models were employed for this 

purpose, each addressing a distinct response variable: the number of bat species observed 

(spec) and the number of bat calls recorded (echolocation calls). For the analysis of first 
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response variable (spec), the global model was defined as follows: Spec ~ Pond + Road + 

Open + Treeline + Forest + Ntree + Distforest + Distbuild, with a Poisson distribution 

specified for the response variable. Multicollinearity among predictors was assessed using 

variance inflation factors (VIFs) calculated with the car package (Fox and Weisberg 2018). 

Based on these calculations, two predictors (open and treeline) with excessively high VIF 

coefficients were excluded from the global model. After this operation, the remaining 

predictors had VIF values below the threshold of 2, indicating an acceptable level of 

multicollinearity. Predictors for the final model were selected using the Akaike Information 

Criterion (AIC) values (Burnham and Anderson 2002) via the dredge function in the MuMIn 

package (Bartoń 2023). This step involved comparing all possible subsets of predictors from 

the global model. Model fit was evaluated using diagnostic tools from the DHARMa package 

(Hartig 2024). Residual diagnostics included tests for zero inflation and dispersion, both of 

which indicated that the model adequately captured the data structure without evidence of 

overdispersion or excess zeros. For the analysis of second response variable (echolocation 

calls), a generalised linear mixed model (GLMM) (Brooks et al. 2017) was constructed using 

the glmmTMB package with the global formula: Echolocation calls ~ Pond + Road + Forest + 

Ntree + Distforest + Distbuild, specifying a Poisson (negative binomial) distribution for the 

response variable. This model was chosen based on diagnostic indicators from the initial 

GLM, which revealed overdispersion and residual patterns inconsistent with model 

assumptions. Subsequently, an AIC-based model selection procedure (dredge function from 

the MuMIn package) was applied to identify the best fitted set of predictors. Residual 

diagnostics confirmed that the final GLMM adequately addressed issues of zero inflation and 

overdispersion. 

 

Results 

Bats were detected at 59 sites, representing 83.1% of all surveyed locations (n = 71). Species 

richness per site ranged from 1 to 4 (mean=1.8, SD=0.87), with a total of six species 

identified, including unidentified Myotis spp. The most frequently recorded species were 

Cnephaeus serotinus, followed by Nyctalus noctula and Pipistrellus nathusii. The remaining 

three species were each detected at only 1–2 sites (Table 2). Echolocation call frequency per 

15-minute session ranged from 1 to 67 (mean = 12.3, SD = 14.25), with a total of 724 calls 

recorded. The number of echolocation signals per species reflected their frequency of 

occurrence at the recording sites (Table 2). 
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Models containing six predictors were created based on Akaike’s Information Criteria. 

The modelling of environmental factors determining the species richness showed that five 

models achieved an AICc value < 2 (Table 3). For the analysis of second response variable 

(echolocation calls), the same criterion was fulfilled by four models. The best models for both 

analyses: species richness and echolocation call frequency contained only one predictor: pond 

area (Table 3). Other habitat parameters: road area, forest area, number of trees, length of tree 

line, distance to the nearest built-up area and distance to the nearest forest area, were omitted 

from further analyses. The best models indicated that pond area positively affected both 

species richness (R-square=0.042) and echolocation call frequency (R-square=0.045; Table 

4). 

 

Discussion 

Our study demonstrated that stormwater ponds adjacent to major roads serve as important 

habitats for bats. The presence of these artificial water bodies was the sole significant habitat 

factor influencing both bat species richness and activity at the study sites. This finding 

highlights the ecological potential of stormwater ponds, which likely provide both drinking 

water and enhanced foraging opportunities for bats utilising road corridors. 

The positive impact of stormwater ponds on bat activity aligns with previous studies 

demonstrating the role of water bodies in sustaining bat populations (Russo and Jones 2003, 

Ancillotto et al. 2019, Russo-Petrick and Root 2023). Bats depend heavily on water, 

especially in regions where it can be a limiting resource (Blakey et al. 2018). These ponds not 

only offer a stable source of hydration (Nystrom and Bennett 2019) but also support a high 

abundance of aquatic insects, a crucial food source for many bat species (Nummi et al. 2011, 

Stahlschmidt et al. 2012). In particular, stormwater ponds support large populations of 

Chironomidae (Diptera) and caddisflies (Trichoptera), two of the most significant prey 

groups for bats species recorded on our study area (Ciechanowski and Zapart 2012, Metcalfe 

et al. 2023). Furthermore, smooth water surfaces may enhance echolocation efficiency, 

facilitating prey detection (Siemers et al. 2001). The presence of water bodies has also been 

associated with increased bat commuting activity, as they with the roadway corridor serve as 

navigational landmarks in fragmented landscapes (Limpens and Kapteyn 1991). Compared to 

cluttered terrestrial habitats, water surfaces provide more open airspace for navigation and 

foraging (Ober and Hayes 2008). 

Other habitat variables had no significant effect on bat species richness or 

echolocation intensity. Several factors may explain this result. Firstly, individual bat species 
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exhibit specific habitat preferences and foraging ranges (Zukal and Rehak 2006, 

Ciechanowski 2015), and the 100 m radius around each recording site may have been too 

small to capture broader habitat relationships. Additionally, the strong influence of pond 

presence on bat activity may have masked the effects of other habitat features, a pattern 

observed in Germany (Heim et al. 2017). Moreover, some recording sites were located near 

illuminated road exits, which may have attracted foraging bats due to insect aggregation 

around artificial lights (Stone et al. 2015, Azam et al. 2018), further obscuring habitat-specific 

preferences. Nevertheless, habitats along roads can strongly influence bat activity, as 

demonstrated in numerous studies (Ancillotto et al. 2019, Medinas et al. 2019, Russo-Petrick 

and Root 2023). This issue requires further research, particularly in relation to the presence of 

water bodies. 

Despite their benefits as foraging and drinking sites, stormwater ponds near roads may 

also pose risks to bat populations. Noise generated by vehicles on major roads has been 

shown to reduce bat activity and foraging efficiency in some species (Schaub et al. 2008, 

Shannon et al. 2016). While this might limit bat activity and road mortality (Berthinussen and 

Altringham 2012), the attractiveness of stormwater ponds to bats could counteract this effect. 

The ecological trap hypothesis suggests that while stormwater ponds provide valuable 

resources, their close proximity to roads may increase collision risks. This risk is especially 

high when ponds are located directly opposite each other on either side of a road, leading bats 

to cross at low altitudes and making them vulnerable to vehicle strikes (Lesiński 2007, Russell 

et al. 2009). While collision risk is highest for low-flying species (Fensome and Mathews 

2016), even species typically flying at higher altitudes, such as Nyctalus noctula and 

Pipistrellus nathusii, may be frequently impacted by vehicle collisions (Lesiński et al. 2011). 

Future research should explore bat utilisation of stormwater ponds on a broader spatial 

and temporal scale, incorporating all seasons rather than focusing solely on the breeding 

period. In particular, assessing insect abundance, pond productivity, and water quality could 

clarify the mechanisms driving bat use of these habitats. Additionally, assessing roadkill rates 

in relation to stormwater pond placement is crucial, because ecological trap for bats should be 

considered. Such studies present logistical challenges due to high traffic volumes and the 

removal of bat carcasses by scavengers (Medinas et al. 2021). However, emerging 

methodologies, such as thermal imaging, could improve data collection in high-risk areas. 

Furthermore, landscape-scale assessments would provide valuable insights into how road 

networks and artificial water bodies collectively influence bat populations over larger spatial 

scales (Roemer et al. 2017). 
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In conclusion, stormwater ponds along major roads provide valuable ecological 

resources for bats, yet their ecological benefits must be weighed against the increased risk of 

road mortality, particularly under conditions conducive to ecological traps. Our study 

highlights the necessity of integrated conservation planning to maximise the ecological 

benefits of artificial ponds while mitigating associated risks. Future studies should investigate 

bat movement patterns along road sections with stormwater ponds and evaluate the efficacy of 

mitigation measures in reducing road mortality. Addressing these knowledge gaps will 

contribute to the development of transportation networks that are more compatible with 

biodiversity conservation. 
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Table 1. Characteristics of variables describing habitat parameters. 

 

Variable Description Mean ± SD Range 

Road Total area of roads in 100 m radius (ha) 0.75±0.20 0.19-1.16 

Pond Total area of ponds in 100 m radius (ha) 0.11±0.15 0-0.66 

Open Total area of open field in 100 m radius (ha) 1.96±0.55 0.42-2.95 

Forest Total area of forests in 100 m radius (ha) 0.32±0.49 0-1.70 

Treeline Length of tree line (km) in 100 m radius 0.12±0.15 0-0.52 

Distforest Distance to the nearest forest (km) 0.22±0.23 0.01-1.01 

Distbuild Distance to the nearest built-up (km) 0.32±0.18 0.08-0.78 

Ntree Number of single trees (n) in 100 m radius 1.1±1.90 0-8 
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Table 2. Characteristics of bat activity at 71 bat monitoring sites. 

 

Species Frequency of 

occurrence  

Number of calls 

Cnephaeus serotinus 48 408 

Nyctalus noctula 30 265 

Pipistrellus nathusii 6 14 

Pipistrellus pipistrellus 1 1 

Pipistrellus pygmaeus 1 1 

Myotis spp. 2 2 

Unidentified 16 33 
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Table 3. Results of the models describing the influence of habitat parameters on species richness 

and number of echolocation calls. Degrees of freedom (df), model log-likelihood (LL), 

corrected AIC (AIC), difference between the model and the best model in the data set (Δ AIC), 

and weight for the model (AICwt) are shown. 

 

Fixed effects df logLik AICc Δ AIC AICwt 

Species richness      

Intercept+Pond 2 -100.474 205.1 0.00 0.114 

Intercept+Pond+Distbuild 3 -100.032 206.4 1.30 0.060 

Intercept+Pond+Distforest 3 -100.034 206.4 1.30 0.059 

Intercept 1 -102.340 206.7 1.61 0.051 

Intercept+Pond+Forest 3 -100.202 206.8 1.64 0.050 

Echolocation calls      

Intercept+Pond 3 -230.502 467.4 0.00 0.159 

Intercept+Pond+Road 4 -230.021 468.6 1.29 0.084 

Intercept+Pond+Distforest 4 -230.125 468.9 1.49 0.075 

Intercept+Pond+Distbuild 4 -230.359 469.3 1.96 0.060 
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Table 4. Estimates of general linear model coefficients for the best models affecting the species 

richness and number of echolocation calls. 

 

Variable Estimate SD z 
p-

value 

Species richess 

Intercept 0.242 0.127 1.89 0.058 

Pond 1.184 0.584 2.02 0.043 

Echolocation calls 

Intercept 2.064 0.181 11.43 <0.001 

Pond 1.903 0.599 3.17 0.002 
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Figure caption 

 

Figure 1. (A) The map of study area, (B) distribution of survey sites along major roads in 

central-eastern Poland, and (C) an example site with marked habitat features used in the 

analysis. 
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