Full pelage ultra-Violet fluorescence occurs in both lesser horseshoe bat, *Rhinolophus hipposideros* (André, 1797) and Blasius's horseshoe bat *R. blasii* Peters, 1967.

Henry Schofield¹, Vida Zrnčić Zrnčić², David Smith³, Ivana Budinski⁴, Daniel Hargreaves⁵, Christopher Damant⁶

¹Vincent Wildlife Trust

²Croatian Biospeleological Society, Rooseveltov trg 6, Zagreb, Croatia

³Hereford Mammal Group, 34 Worcester Road, Malvern WR14 4AA, U.K.

⁴Department of Genetic Research, Institute for Biological Research "Siniša Stanković" – National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia

⁵Vincent Wildlife Trust, Eastnor, Ledbury, Herefordshire, HR8 2EP, U.K.

⁶Pell Frischman, Station Road, Swanbourne, Bucks, MK17 0SR, U.K.

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

Abstract:

Ultra-Violet (UV) fluorescence has been observed and reported in a wide range of living organisms from lower plants to mammals. In animals, its function has been attributed to a range of behaviours including signalling in mate selection, camouflage, and mimicry, but in many cases its function is unclear, and it may be non-adaptive. Here we report on full pelage UV fluorescence in both *Rhinolophus hipposideros*, the lesser horseshoe bat and *R. blasii*, Blasius's horseshoe bat but it is restricted to just these two species within the European Rhinolophidae. The fluorescence in *R. hipposideros* was only observed in adult bats of both sexes and not in juveniles (at least until they were six months old). It is unlikely this phenomenon has any function in the ecology or behaviour of either the species, as rhinolophids lack the short wavelength opsins in their cones to detect light emitted at these wavelengths. It may be maladaptive, as some nocturnal predators may have the ability to detect the fluorescence. Potentially, the differing responses of adults and juveniles have uses in the monitoring of species, especially concerning confirming maternity colonies and estimates of the productivity of colonies. In the case of *R. blasii*, it may also aid in the identification of this cryptic species that often roosts with other medium-sized horseshoe bats.

Keywords: Chiroptera, Rhinolophus hipposideros, Rhinolophus blasii, UV-Fluorescence.

Received: 2024-09-13 Revised: 2025-03-04 Accepted: 2025-03-16 Final review: 2024-12-11

Short title UV fluorescence in horseshoe bats

Corresponding author Henry Schofield

Vincent Wildlife Trust; email: henryschofield57@gmail.com

Introduction

1

2

3

4

5

6

7

8 9

10

11 12 Fluorescence is the process where radiation at higher energy levels (shorter wavelengths) are absorbed by particular molecules, causing those molecules to emit light at a lower energy level (longer wavelengths). This process frequently involves ultra-violet (UV) light, often resulting in the generation of emissions in the visible spectrum; in natural systems this process is dependent on the UV component of sunlight. The spectral quality of UV light reaching the Earth's surface varies diurnally and seasonally, and with altitude and latitude. UV radiation is strongest in the tropics and at high altitudes, due to the thinness of the ozone layer and the reduced air mass between the Earth's surface and the edge of the atmosphere respectively. Although light is at its lowest intensity at night, moonlight still contains a proportion of UV radiation, and is relatively more abundant at twilight compared with daylight (Spitschan et al., 2016). All of these factors will impact on the degree of fluorescence over diurnal and seasonal cycles (Zhang et al., 2020).

13 UV fluorescence has been reported in biological substances as far back as the 19th century, with the initial observations being made in plants; in recent years it has been reported increasingly widely in a 14 range of different taxa (Lagorio et al., 2015). UV fluorescence has been recorded in a range of 15 mammals, it occurs in some marsupials (Pine et al., 1985; Travouillon et al., 2023), rodents 16 17 (Nummert et al., 2023; Olson et al., 2021; Sobral and Souza-Gudinho, 2022), insectivores (Hamchand, 2021) and bats (Reinhold, 2022; Travouillon et al., 2023). The function of UV 18 19 fluorescence in animals has been attributed to signalling around mate choice (Garcia and de Perera, 20 2002), a type of Batesian mimicry where prey species emit a similar fluorescence to their predators 21 (Kohler et al., 2019), camouflage against vegetation or habitats that themselves fluoresce (Sparks et al., 2014) or it may simply be the by-product of biochemical processes and have no adaptive purpose 22 23 (Marshall and Johnsen, 2017).

In July 2024, we opportunistically discovered whole pelage fluorescence in a colony of some 25
 Rhinolophus hipposideros, lesser horseshoe bat, during fieldwork on Lokrum Island in southern
 Croatia. The fluorescence occurred under illumination with both 365nm or 395nm ultra-violet hand
 torches and was visible to the naked eye as a light blue glow coming from the fur of the bats, but not
 from their wing membranes (Figure 1).

This fluorescence was emitted by adult animals but not from the pups the females were carrying or
 from newly volant juveniles.

In this study we investigate whether this phenomenon was restricted geographically *to R. hipposideros* in the area around our study site in southern Croatia and whether full pelage fluorescence occurred more widely in the other European Rhinolophidae. We also discuss the potential function or non-function of this phenomenon and whether it has potential uses in monitoring or surveying for species.

36 Materials and Methods

To determine whether UV fluorescence was more widespread than just at our Croatian study site, seven colonies of *R. hipposideros* in Britain, nine in Croatia and two in Serbia were tested. To ascertain whether this phenomenon occurred in other European rhinolophids, we tested animals

from three maternity colonies of *R. ferrumequinum* in Britain, six in Croatia and two in Serbia. Three
 colonies of *R. euryale* in Croatia and two in Serbia were visited. *R. blasii* was tested at one site in
 both Croatia and Serbia, and *R. mehelyi* at one site in Serbia.

44 During surveys roosts were briefly entered during the day and the bats illuminated using either a 45 365nm Luxnovaq or 395nm Lightfe ultra-violet hand LED torch. A selection of fluorescing animals 46 were photographically documented in situ while roosting using a Nikon Z8 camera fitted with a 70-47 200mm Nikkor telephoto lens (UV filter removed). The UV torch was held alongside the camera to 48 illuminate the bats, and the camera was set to an aperture of f2.8 and a shutter speed of 1/30s, the 49 ISO was varied between 1600 to 16000 depending on the distance to the subject.

50A small number of bats in Croatia and Britain were caught and exposed to the UV torchlight to51document the response of the pelage more closely. These handheld bats were placed on a black52non-UV reflective background. They were illuminated from 1.5m with the 365nm Luxnovaq UV hand53torch and photographed using a 105mm Nikkor Macro lens with the Nikon Z8 camera set to an54aperture of f8 and shutter speed of 1/40s and ISO of 12800. These activities were carried out under55the appropriate licences in Croatia and UK.

56 Results

In addition to the UV fluorescence observed in *R. hipposideros* in Croatia, the phenomenon was
 observed at all colonies of the *R. hipposideros* sites surveyed in Britain, Croatia and Serbia,
 confirming that this phenomenon is geographically widespread in this species. The pelage of adult *R. hipposideros* of both sexes elicited a strong light blue glowing response, as did tests of the pelage of
 mummified carcasses of adults found in the roosts.

The pigmented membranes of these bats (wing membranes, the nose-leaf, and the tips of the pinnae) elicited no response, although these was a slight response from the unpigmented skin inside the pinnae. While the wing membranes themselves did not fluoresce under UV light, the short hairs on the wings, particularly on the plagiopatagium, did fluoresce (Figure 2). No fluorescence was observed from the pelage or membranes of juvenile *R. hipposideros*. This included both non-volant animals and volant animals up to the age of 6 months (Figure 3).

⁶⁸ UV fluorescence was also recorded in colonies of *R. blasii* in both Croatia and Serbia (Figure 4), once
 ⁶⁹ again the response was restricted to the fur and not the membranes. All of the *R. ferrumequinum, R.* ⁷⁰ *euryale* and *R. mehelyi* we tested elicited no response (Table 1).

Discussion.

There have been several published studies into the occurrence of UV fluorescence in bats, all nine
 bat species examined by Travouillon et al. (2023) showed some fluorescence, but the tissues
 emitting light in their study were mainly membranes and wing bones, with just two of the species
 tested having fully reactive fur and a further two exhibited fur fluorescence restricted to the neck or
 parts of the pelage. Tumlison and Tumlison (2021) reported no fluorescence in the eight bat species

71

78 they surveyed in Arkansas. Toussaint et al. (2022) reported no fluorescence in the one bat species 79 (Plecotus auritus) they tested amongst 23 other mammal species, and Gual-Suárez et al. (2024) 80 found bristles on the feet of Tadarida brasiliensis fluorescing. Reinhold (2022) describes striking fluorescent wing markings in Nyctimene robinsoni along with a full pelage response as a blue glow 81 but in a further seven species she tested, six gave very mild responses on the tips of their fur or on 82 83 claws and wing bones and one species did not react at all. In our study two of the five European rhinolophids exhibited full pelage fluorescence. On the evidence collected to date, it appears that 84 85 full pelage fluorescence is relatively unusual in bats.

86 As to its function, Marshall and Johnsen (2017) suggest a checklist for ecologically significant fluorescence and key amongst these is the spectral sensitivity range of potential viewers. If the UV 87 fluorescence in R. hipposideros and R. blasii is adaptive and being used to signal to conspecifics, we 88 89 would expect the species to have the ability to perceive the wavelengths of light being emitted. 90 Some bat species do have vision in short wavelength colours and into UV spectrum (Gorresen 2015), 91 and this is dependent on them having cone photoreceptors in their retina with the short wavelength 92 sensitive opsins (S opsin) required to detect these spectra (Müller et al., 2009). However, Zhao et al. 93 (2009) have shown a divergence in different bat evolutionary lineages regarding the S opsin gene, and it has been lost from the Rhinolophidae, probably due to an evolutionary trade-off in sensory 94 95 systems, with this and related families evolving more highly sophisticated Constant Frequency 96 echolocation systems and relying less on vision compared with other bats (Jones et al. 2013; Xuan et 97 al. 2012).

If the fluorescence is not for signalling conspecifics, it may be used as a type of Batesian mimicry
defending species used against potential predators. In which case we would expect to be able to
identify a suitable defended or unpalatable species that is being mimicked. As other bat species are
neither unpalatable or defended against larger nocturnal avian or mammalian predators, there are
not any other volant mammal subjects to mimic. The closest we can come to a non-volant potential
unpalatable species of a similar size are shrews, but there is no evidence that they are UV
fluorescent (Toussaint et al. 2022), and so it does not appear that this is a case of Batesian mimicry.

105 In which case, it would appear that UV fluorescence in these rhinolphid species is non-adaptive and 106 probably a by-product of the species' physiological processes (Toussaint et al., 2023). Fur naturally 107 has a degree of photoluminescence because it contains the protein keratin, but this does not explain the luminous response which we have from UV light. The two chemical groups that could potentially 108 109 cause the fluorescence in the fur of these species are porphyrins or a build-up of tryptophan metabolites (Reinhold et al., 2023). Porphyrins generally emit fluorescence that is pink, orange, and 110 111 red (Olson et al. 2021), and therefore it is more likely the cause of UV fluorescence in R. hipposideros 112 and R. blasii are tryptophan metabolites, which fluoresce across a range of the visible spectrum 113 including the shorter blue wavelengths (Pine et al., 1985). A build-up of metabolites over time may 114 also explain why the phenomenon is not observed in juvenile R. hipposideros that would not yet 115 have accumulated the tryptophan metabolites needed to elicit the response from UV light, we 116 believe this is the same for juvenile R. blasii. At one of our cave study sites in Croatia visited in late August, a group of 20 R. blasii elicited no response from UV lights, on a return visit six months later 117 118 when the over-wintering colony numbered 50 animals the majority of the bats were fluorescing. In 119 common with other rhinolophids, it appears the adults moved out of the maternity colony at the 120 end of the summer leaving the juveniles alone at this time of the year.

- 122 Having pelage that glows under UV light appears maladaptive for species that are potentially prone 123 to crepuscular and nocturnal predation. Principal amongst the nocturnal predators are owls; 124 although owls themselves lack S opsins, adaptations to their rod vision enable them to detect bright signals from UV reflecting surfaces, such as some feathers (Höglund et al., 2019) and presumably UV 125 emitting fur. Other potential predators, such as domestic cats, can see in UV (Douglas and Jeffery, 126 2014) and their hunting could also benefit from this fluorescence. The behavioural adaptation 127 128 observed in R. hipposideros and R. blasii foraging at night, flying within, under or close to vegetative 129 clutter (Bücs & Csorba 2023; Schofield et al., 2022), as well as protecting these species from 130 predation by diurnal predators hunting at dusk and dawn, may also reduce nocturnal predation by 131 predators able to detect the shorter wavelength light the bats are emitting when UV light is present.
- The UV fluorescence demonstrated by the adults of these bats may provide those monitoring their 132 133 population status with an additional tool. Counts of glowing bats versus those not eliciting a 134 fluorescent response inside roosts or as they emerge could be a new tool for identifying maternity 135 roosts and estimating the productivity of single species colonies. In addition, R. blasii is a cryptic 136 species that roosts with *R. euryale* in some areas of Europe and the two species are difficult to 137 separate without catching and handling the bats. The use of UV-torches to determine whether R. 138 blasii is present and if so, what proportion of the mixed colony they comprise would be a non-139 invasive means of monitoring this species. This was the case in this study at Lazareva pećina in 140 Serbia, a site known to have a mixed colony consisting of around 70% R. euryale and 30% R. blasii. 141 Surveying the cave with UV-torches resulted in 420 bats eliciting no response and 180 that glowed, 142 in line with the results of mist-netting surveys carried out at the site (own data).

Acknowledgements.

144Our work in Croatia was with the permission of the Public Institution Lokrum Reserve and conducted145under licence CLASS: UP/I-352-04/23-08/53, REG. NO.: 517-10-1-2-23-5. The photographs in this146paper were taken under licence issued by Natural Resources Wales: S093104/1. We're grateful to147Jenny MacPherson and Bridgit Schofield for their useful comments on drafts of this paper. We are148also grateful to the two reviewers of this paper, who helped to significantly strengthen our findings.

149 References

- Bücs, SL., Csorba, G., 2023. Blasius's Horseshoe Bat Rhinolophus blasii Peters, 1867. In: Russo, D.
 (eds) Chiroptera. Handbook of the Mammals of Europe. Springer, Cham.
 https://doi.org/10.1007/978-3-030-44029-9 41
- 153Douglas R.H., Jeffery G., 2014. The spectral transmission of ocular media suggests ultraviolet154sensitivity is widespread among mammals. Proc. R. Soc. B 281: 20132995. doi:15510.1098/rspb.2013.2995
- 156Garcia C.M., de Perera T.B., 2002. Ultraviolet-based female preferences in a viviparous fish. Behav.157Ecol. 52(1): 1-6. doi: 10.1007/s00265-002-0482-2

- 159Gorresen P.M., Cryan P.M., Dalton D.C., Wolf S., Bonaccorso F.J., (2015). Ultraviolet Vision May be160Widespread in Bats. Acta chiropterol. 17(1): 193-198. doi. 10.3161/15081109ACC2015.17.1.017
- 161Gual-Suárez F., Ramos-H D., García F., Pérez-Montes L.E., Narro Delgado A., Medellín R.A., 2024.162Ultraviolet-induced photoluminescent bristles on the feet of the Mexican free-tailed bat (Tadarida163brasiliensis). Mamm Biol. doi: 10.1007/s42991-024-00441-3
- Hamchand R., Lafountain A.M., Büchel, R. Maas K.R., Hird S.M., Warren M., Frank H.A. Brückner C.,
 2021. Red Fluorescence of European Hedgehog (Erinaceus europaeus) Spines Results from Free-Base
 Porphyrins of Potential Microbial Origin. J Chem Ecol 47: 588–596. doi: 10.1007/s10886-021-01279-6
- Höglund J., Mitkus M., Olsson P., Lind O., Drews A., Bloch N.I., Kelber A., Strandh M., 2019. Owls lack
 UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and
 ocular media transmittance. Vis. Res. 158: 109-119. doi: 10.1016/j.visres.2019.02.005
- 170Jones G., Teeling E.C., Rossiter S.J., 2013. From the ultrasonic to the infrared: molecular evolution171and the sensory biology of bats. Front Physiol. 30(4): 117. doi:10.3389/fphys.2013.00117
- Kohler A.M., Olson E.R., Martin J.G., Anich P.S., 2019. Ultraviolet fluorescence discovered in New
 World flying squirrels (Glaucomys). J. Mammal. 100: 21-30. doi./10.1093/jmammal/gyy177
- Lagorio, M.G., Cordon G.B., Iriel A., 2015. Reviewing the relevance of fluorescence in biological
 systems. Photochem. Photobiol. Sci., 14: 1538-1559. doi: 10.1039/c5pp00122f
- Marshall J., Johnsen S., 2017. Fluorescence as a means of colour signal enhancement. Phil. Trans. R.
 Soc. B 372: 20160335. doi:10.1098/rstb.2016.0335
- Müller B., Glösmann M., Peichl L., Knop G.C., Hagemann C., Ammermüller J., 2009. Bat Eyes Have
 Ultraviolet-Sensitive Cone Photoreceptors. PLoS ONE 4(7): e6390. doi:
 10.1371/journal.pone.0006390
- Nummert G., Ritson K., Nemvalts K., 2023. Photoluminescence in the Garden dormouse (Eliomys quercinus). Zoology 157: 126075. doi: 10.1016/j.zool.2023.126075
- Olson E.R., Carlson M.R., Ramanujam V.M.S., Sears L., Anthony S.E., Spaeth Anich P., Ramon L.,
 Hulstrand A., Jurewicz M., Gunnelsom A.S., Kohler A.M., Martin J.G., 2021. Vivid biofluorescence
 discovered in the nocturnal Springhare (Pedetidae). Sci Rep 11: 4125. doi: 10.1038/s41598-021 83588-0
- Pine R., Rice J., Bucher J., Tank D., Greenhall A., 1985. Labile pigments and fluorescent pelage in
 didelphid marsupials. Mammalia, 49(2): 249-256. doi: 10.1515/mamm.1985.49.2.249
- 189 Reinhold L., 2022. Photoluminescent yellow wing markings of Eastern Tube-nosed Fruit Bats
 190 (*Nyctimene robinsoni*). North Queensland Naturalist 52: 69-74.
- 191Reinhold L., Rymer T.L., Helgen K.M., Wilson D.T., 2023. Photoluminescence in mammal fur: 111192years of research. J. Mammal. 104(4): 892–906. doi:10.1093/jmammal/gyad027
- 193Schofield H., Reiter G., Dool S.E., 2022. Lesser Horseshoe Bat Rhinolophus hipposideros (André,1941797). In: Hackländer, K., Zachos, F.E. (eds) Handbook of the Mammals of Europe. Handbook of the195Mammals of Europe. Springer, Cham. doi: 10.1007/978-3-319-65038-8_39-1
- Sobral G., Souza-Gudinho F., 2022. Fluorescence and UV–visible reflectance in the fur of several
 Rodentia genera. Sci Rep 12: 12293. doi: 10.1038/s41598-022-15952-7

- 199Sparks J.S., Schelly R.C., Smith W.L., Davis M.P., Tchernov D., Pieribone V.A., Gruber D.F., 2014. The200Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable201Phenomenon. PLoS One 9: e83259. doi: 10.1371/journal.pone.0083259
- 202Spitschan M., Aguirre G., Brainard D., Sweeney A.M., 2016. Variation of outdoor illumination as a203function of solar elevation and light pollution. Sci Rep 6: 26756. doi: 10.1038/srep26756
- Toussaint S.L.D., Ponstein J., Thoury M., Métivier R., Kalthoff D.C., Habermeyer B., Guilard R., Bock
 S., Mortensen P., Sandberg S., Gueriau P., Amson E., 2022. Fur glowing under ultraviolet: in situ
 analysis of porphyrin accumulation in the skin appendages of mammals. Integr. Zool. 18: 15–26. doi:
 10.1111/1749-4877.12655
- 208Travouillon K.J., Cooper C., Bouzin C.J.T., Umbrello L.S., Lewis S.W., 2023. "All-a-glow: spectral209characteristics confirm widespread fluorescence for mammals," R Soc Open Sci. 10(10): 230325. doi:21010.1098/rsos.230325
- 211Tumlison C.R., Tumlison T.L., 2021. Investigation of Fluorescence in selected mammals of Arkansas.212JAAS. 75: 29-35. doi: 10.54119/jaas.2021.7515
- Xuan F., Hu K., Zhu T., Racey P., Wang X., Zhang S., Sun Y., 2012. Immunohistochemical evidence of
 cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comp.
 Biochem. Physiol. B. 161(4): 398-403. doi: 10.1016/j.cbpb.2012.01.005
- Zhang Z., Zhang Y., Zhang Q., Chen J.M., Albert Porcar-Castell A., Guanter L., Wu Y., Zhang X., Wang
 H., Ding D., Li Z., 2020. Assessing bi-directional effects on the diurnal cycle of measured solar induced chlorophyll fluorescence in crop canopies. Agric. For. Meteorol.. 295: 108147. doi:
 10.1016/j.agrformet.2020.108147
- 220Zhao H., Rossiter S.J., Teeling E.C., Li C., Cotton J.A., Zhang S., 2009. The evolution of color vision in221nocturnal mammals. Proc Natl Acad Sci U S A. 106(22): 8980-8985.doi: 10.1073/pnas.0813201106

Site and Region	Country	Species	Colony	Result
-	-	•	size	
Lokrum Island, South Dalmatia	Croatia	R. hipposideros	25	Luminescence
Powys, Wales	UK	R. hipposideros	298	Luminescence
Shropshire, England	UK	R. hipposideros	215	Luminescence
Gower, Wales	UK	R. hipposideros	382	Luminescence
		R ferrumequinum	50	No response
Wiltshire A, England	UK	R ferrumequinum	96	No response
Wiltshire B, England	UK	R. hipposideros	10	Luminescence
Somerset, England	UK	R ferrumequinum	75	No response
		R. hipposideros	88	Luminescence
Somerset, England	UK	R. hipposideros	45	Luminescence
Monmouthshire, Wales	UK	R. hipposideros	213	Luminescence
Kopaonik Mt	Serbia	R ferrumequinum	4	No response
		R. hipposideros	2	Luminescence
Canetova pećina, Eastern Serbia	Serbia	R. mehelyi	1	No response
Pećina u dolini Crne reke, Eastern Serbia	Serbia	R. hipposideros	4	Luminescence
Gornjak, Eastern Serbia	Serbia	R ferrumequinum	88	No response
		R. euryale	13	No-response
Lazareva pećina, Eastern	Serbia	Mixed colony of R.	600	Mixed
Serbia		euryale and R. blasii		response (180 luminescence, 420 no
				response)
Ercegovci A, Sibenik-Knin Countz	Croatia	R ferrumequinum	5	No response
		R. hipposideros	2	Luminescence
Ercegovci B, Sibenik-Knin Countz	Croatia	R. hipposideros	5	Luminescence
Golubic, Zadar County	Croatia	R.blasii	50	Luminescence
		R. hipposideros	1	Luminescence
Nova Krslja, Karlovac	Croatia	R ferrumequinum	24	No response
County		R. hipposideros	14	Luminescence
Kordunski Ljeskovac A,	Croatia	R ferrumequinum	2	No response
Karlovac County		R. hipposideros	5	Luminescence
Kordunski Ljeskovac B, Karlovac County	Croatia	R. hipposideros	8	Luminescence
Lipovac, Karlovac County	Croatia	R ferrumequinum	9	No response
		R. hipposideros	29	Luminescence
Stara Krslja A, Karlovac	Croatia	R.euryale	3	No response
County		R ferrumequinum	2	No response
		R. hipposideros	9	Luminescence
Stara Krslja B, Karlovac	Croatia	R.euryale	4	No response
County		R ferrumequinum	18	No response
		R. hipposideros	29	Luminescence

Figure 1 – UV Fluorescing R. hipposideros at roost.

Figure 2 - Fluorescent pelage and hairs on the plagiopatagium of the wing of adult R. hipposideros.

Figure 3. Juvenile R. hipposideros showing no UV fluorescence from the pelage.

Figure 4. UV-Fluorescence in adult R. blasii

Index

Manuscript body

Download source file (36.92 kB)

Tables

Download source file (17.48 kB)

Table 1. The results of UV testing Rhinolophid colones.

Figures

Figure 1 - Download source file (6.7 MB)

Figure 1 – UV Fluorescing R. hipposideros at roost.

Figure 2 - Download source file (3.47 MB)

Figure 2 - Fluorescent pelage and hairs on the plagiopatagium of the wing of adult R. hipposideros.

Figure 3 - <u>Download source file (2.73 MB)</u> Figure 3. Juvenile R. hipposideros showing no UV fluorescence from the pelage.

Figure 4 - Download source file (17.88 MB)

Figure 4. UV-Fluorescence in adult R. blasii

