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Supplement S2 

Gonzalez et al. 2022. Updated distribution and conservation perspectives of marmosine 

opossums from Colombia. 

SUPPLEMENT S2: DETAILED METHODS AND PERFORMANCE METRICS 

Methods. ---Since each model should use appropriate background data for the modeling area, 

for each species and each area M (see below), a unique set of 10,000 background points was 

generated to represent the environmental data in each predictor's scenario. That is, 

background points varied between types of area M but not between predictor’s scenarios, to 

allow a more straightforward comparison (specially when using AICc), when choosing the 

best models across scenarios. 

Predictors scenarios come from a subselection of current climatic conditions 

represented by subsets of WorldClim v. 2 (Fick and Hijmans, 2017), ENVIREM (Title and 

Bemmels, 2018), and one vegetation index, the Modified Soil Adjusted Vegetation Index 

(MSAVI). From all the above-mentioned variables we selected 8 WorldClim and 2 

ENVIREM, based on those that have explanation power for marsupials (Prieto-Torres and 

Pinilla-Buitrago, 2017; Tocchio et al., 2015; Gutiérrez et al., 2014; Martin, 2011, 2010), and 

those that may vary widely in the study zone such as topography, due to the Andes 

mountains. For the last case, we opted to use ecologically-oriented variables (Title and 

Bemmels, 2018), rather than other more common topographic variables such as digital 

elevation models or slope.  

To avoid high collinearity between the predictors in the ‘uncorr’ case, we used a 

Pearson test to randomly choose pairs of variables below p=0.75, by sampling within each 

species modeling area 500,000 random values. For models that did not include space and/or 
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time extrapolation, previous studies found that collinearity among predictors may not 

significantly affect Maxent models (Feng et al., 2019a). Thus, for the ‘onlywc’, ‘ud.noplants’, 

and ‘ud.all’ scenarios, predictors were chosen according to our informed criteria of potential 

explanation power (Fourcade et al., 2018) and not tested for collinearity. 

Barve et al. (2011) discussed how the modeling area from which predictors are 

sampled for background points affects modeling results. Here we used two methods to 

estimate this area, herein referred as area M, after the BAM diagram from Peterson and 

Soberón (2012). The M area represents a geographic space with suitable abiotic conditions 

historically available for the species to disperse (including currently occupied and unoccupied 

areas) (Barve et al., 2011). Ideally, information from fossils are used to estimate these areas 

but in the absence of them, buffered (Tocchio et al. 2015; Gutiérrez et al. 2014) or ecoregion 

(Prieto-Torres and Pinilla-Buitrago, 2017) methods have been used in these species. In the 

absence of information of their comparative performance, we used an adaptation of both 

approaches and compared them according to four evaluation metrics.  

Below is the example of two methods for estimating modeling areas (area M): a 

simple approach where point localities are buffered by ~330 km² generating a minimum 

convex polygon of the buffers (Fig. S1, left), and ecoregion-derived area where a minimum 

convex polygon from the localities is buffered by ~55 km² and overlapped to ecoregions (Fig. 

S1, right). Note how the ecoregion-derived method represents natural continuous areas, while 

the simple approach delimits the model area arbitrarily. 
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Fig. S2.1. Two modeling areas for maxent models of Marmosa alstoni. Simple buffer-derived 

area (left, green) represents a common practice in maxent models, while ecoregion-derived 

area (right, blue) represents an alternative to the latter method. 

After applying thresholds to the models, we used the following protocol to convert 

raster predictions to polygons that represent the species ranges. First, we downscaled the 

resolution from 1 km² to 4 km² to avoid zones with many isolated or scattered presence cells. 

Then, prediction rasters were converted to polygon data using GDAL and their limits were 

smoothed using the ksmooth function from the R package ‘smoothr’ (Strimas-Mackey, 

2020), by a smoothing index of 2. Additionally, holes that were less than 100 km2 and 

crumbs that were less than 50 km2 were removed. 

Performance metrics. ---Summary of the performance metrics for the models used for 

final range construction of each species in this study (Table S1.1) and overall performance 

metrics across all models (Fig. S1.2) 
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Table S2.1. Performance metrics of maxent models for Marmosini species of Colombia. 

Metrics presented correspond to the chosen models after filtering results and visual 

inspection. Abbreviations: CV, cross-validation; F, features; rm, regularization multiplier; t-

AUC, training AUC; testAUC, average test AUC; orMTP, average omission rate at the 

minimum training presence; AICc, corrected Akaike Information Criterion.  

Species Area M CV F rm t-AUC testAUC orMTP AICc 

Marmosa alstoni M2 random LQ 0.5 0.88 0.81 0.11 798.3 

Marmosa germana M2 block LQ 4.5 0.81 0.78 0.13 279.32 

Marmosa isthmica M1 random LQP 3 0.86 0.83 0.03 1553.8 

Marmosa jansae M2 block LQ 0.5 0.82 0.77 0.13 278.55 

Marmosa lepida M2 random LQ 1 0.83 0.81 0.03 885.4 

Marmosa phaea M2 block L 2.5 0.89 0.89 0 262.13 

Marmosa regina M2 random LQP 0.5 0.89 0.85 0.07 1642.89 

Marmosa robinsoni M2 random LQHPT 1 0.93 0.9 0.01 5189.94 

Marmosa rubra M2 block LQP 0.5 0.94 0.9 0 438.19 

Marmosa rutteri M2 random LQP 5 0.71 0.7 0.07 916.72 

Marmosa waterhousei M2 block LQ 0.5 0.86 0.77 0.17 724.91 

Marmosa xerophila M2 block LQP 3 0.94 0.92 0.23 313.52 

Marmosa zeledoni M2 block LQP 1.5 0.81 0.76 0 892.64 

Monodelphis adusta M1 random LQ 2 0.82 0.81 0.08 688.17 

Monodelphis brevicaudata M2 random LQP 0.5 0.75 0.72 0.05 1113.98 

Monodelphis palliolata M2 random LQ 0.5 0.94 0.92 0.02 994.73 
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Fig. S2.2. Performance metrics of Maxent models for the Marmosini species of Colombia, 

contrasting between two modeling areas. M1 refers to a buffer-derived area and M2 to an 

ecoregion-derived area. Graphics are based on the models that are among the upper quartile of 

the test AUC metric, and show the mean value among grouped results based on predictors 

scenarios (case) and cross-validation regarding train AUC (a), test AUC (b), orMTP (c), and 

AICc (d).  
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