Table S1: List of primer pairs used for PCR and sequencing of mitogenomes in *Alces alces*.

Primer	Primer sequence	Position	Tm [°C]	Product [bp]	Genes	Primer source
12S-FW 12S-RE	GGTAAATCTCGTGCCAGCCA V TCCAGTATGCTTACCTTGTTACGAC	00295 01007	57.3 56.2	712	<12s_rRNA>	Fajardo et al., 2007†
00871c_ 02052c_	F TGCTTAGTTGAATTAGGCAATG R AGAGAACAAGTGATTATGCTACC	00872 02048	51.3 52.2	1176	<12s_rRNAtRNA-Val16s_rRNA>	Matosiuk et al., 2014‡
01950c_ 03402c_	F ACCTCCAGCATAACTAGTATTGG R AATGGTCCTGCTGCATACTCTA	01945 03400	53.7 55.2	1455	<16s_rRNAtRNA-LeuND1>	Matosiuk et al., 2014‡
03140c_ 04165c_	F CTACGAGCAGTAGCTCAAACA R ACAGTTCATTGGCCTGAAAATA	03138 04163	54.1 52.5	1025	<nd1trna-iletrna-glntrna-metnd2></nd1trna-iletrna-glntrna-metnd2>	Matosiuk et al., 2014‡
3910a_F 4300a_F 5430a_F	CCTTCCCGTACTAATAAACC 72 TCATCAGGCCTAATTCTACT R TATGCCTGCTCARGCACCAA	03894 04279 05413	50.0 - 56.0	1519	<trna-metnd2trna-trptrna-ala> <trna-asntrna-cystrna-tyrcox1></trna-asntrna-cystrna-tyrcox1></trna-metnd2trna-trptrna-ala>	This study
COX1_l COX1_l	TCAGCCATTTTACCTATGTTCA R ATRTAGCCAAARGGTTCTTTTT	05315 06141	51.7 48.5	826	<trna-tyrcox1></trna-tyrcox1>	GenBank§
06060a_ 07050a_	F TCTTTGGACACCCCGAAGTA R ATGGGGTAAGCCATATGAGG	06039 07030	55.2 53.8	991	<cox1trna-sertrna-aspcox2></cox1trna-sertrna-aspcox2>	This study
06090a_ 07610a_	F TCGTAACATACTACTCAGGG R ATTGTCCGTAGTACAGGC	06099 07602	50.2 51.1	1503	<cox1trna-sertrna-aspcox2></cox1trna-sertrna-aspcox2>	This study
07420a_ 08930a_	F GTAGATAACCGAGTCGTTCTACC R AGGCTTGAGTGGTAAAATGCTC	07428 08930	54.0 55.4	1502	<cox2trna-lysatp8atp6cox3></cox2trna-lysatp8atp6cox3>	This study
08750a_ 09560a_	F CAATAGTCCTATTAACACTTGGC R TAATTGAGGGAGTCAGAATGC	08729 09548	51.4 52.1	819	<cox3trna-glynd3></cox3trna-glynd3>	This study
09340a_ 10440a_	F AGCCGCTGCTTGATATTGAC R AGTGGTGTTGGCTGGCTATT	09321 10423	55.4 56.5	1102	<cox3trna-glynd3trna-argnd4lnd4></cox3trna-glynd3trna-argnd4lnd4>	This study

Table S1: (continued) List of	primer pairs used for PCR and s	equencing of mitogenomes in Alces alces.
-------------------------------	---------------------------------	--

Primer	Primer sequence	Position	Tm [°C]	Product [bp]	Genes	Primer source
10270a_F 11660a_R	CAATTCCACAACTCACAGCCTA AGCAGTTCTTGCGTGCTTTT	10248 11642	55.0 55.7	1394	<nd4trna-histrna-ser></nd4trna-histrna-ser>	This study
11466c_F 13062c_R	CACGAGAAAATGCCCTCATATCA ATCGAGGTTGTCCTAAGAGTGC	11465 13060	54.9 56.2	1595	<nd4trna-histrna-sertrna-leund5></nd4trna-histrna-sertrna-leund5>	Matosiuk et al., 2014‡
12965c_F 14224c_R	CAACGCCTGAGCCCTCTTA TGGGAGATCAATGAATGCGTT	12963 14222	56.7 54.4	1259	<nd5nd6trna-glucytb></nd5nd6trna-glucytb>	Matosiuk et al., 2014‡
ML103 ML104	GACTAATGATATGAAAAAACCATCGTTG TTGTTCTTCATCTCTGGTTTACAAGAC	14108 15352	52.8 55.0	1244	<trna-glucytbtrna-thr></trna-glucytbtrna-thr>	Chikuni et al., 1995¶
15150a_F 15470a_R	CACTCACATGAATCGGAGGA AAGGTTCTTGAATTTTGTGGAA	15157 15472	53.9 50.9	315	<cytbtrna-thrtrna-prod-loop></cytbtrna-thrtrna-prod-loop>	This study
LGL283 ISM015	TACACTGGTCTTGTAAAC TGGCCCTGTAGAAAGAAC	15319 15997	46.0 51.5	678	<trna-thrtrna-prod-loop></trna-thrtrna-prod-loop>	Hundertmark et al., 2002#
15840a_F 00320a_R	ATGCGTATCCCGTCCATTAG GTGGCTGGCACGAGATTTAC	15840 00315	54.1 56.3	893	<d-looptrna-phe12s_rrna></d-looptrna-phe12s_rrna>	This study
16290a_F 16410a_R	TCCTTATATAGTTACCACTA CTGCGCTTAAATAGTTACCTTG	16293 16406	43.3 51.9	113	<d-loop></d-loop>	This study

†Fajardo V., González I., Lopez-Calleja I., Martín I., Rojas M., Hernández P.E., García T., Martín R., 2007. Identification of meats from red deer (*Cervus elaphus*), fallow deer (*Dama dama*), and roe deer (*Capreolus*) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Meat Science 76: 234-240.

*Matosiuk M., Sheremetyeva I.N., Sheremetyeva I.S., Saveljev A.P., Borkowska A., 2014. Evolutionary neutrality of mtDNA introgression: evidence from complete mitogenome analysis in roe deer. J. Evol. Biol. 27: 2483-2494.

§GenBank acc. num. GQ336878.1 PCR primers.W

[Chikuni K., Mori Y., Tabata T., Saito M., Monma M., Kosugiyama M., 1995. Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J. Evol. Biol. 41: 859866.

Hundertmark K.J., Shields G.F., Udina I.G., Bowyer R.T., Danilkin A.A., Schwartz C.C., 2002. Mitochondrial phylogeography of moose (*Alces alces*): late pleistocene divergence and population expansion. Mol. Phyl. Evol. 22: 375-387.

Supplementary Information

Phylogeny and diversity of moose (Alces alces, Cervidae, Mammalia) revealed by complete mitochondrial genomes

M. Świsłocka, M. Matosiuk, M. Ratkiewicz, A. Borkowska, M. Czajkowska, P. Mackiewicz

Table S2: List of ungulate species and GenBank accession numbers of their mitogenomic sequences used in phylogenetic analysis.

Scientific name	English name	GenBank acc. num.
Axis axis	Chital	JN632599.1
Axis porcinus	Indian hog deer	JN632600.1
Blastocerus dichotomus	Marsh deer	JN632603.1
Bos taurus	Koren native cattle	NC_006853.1
Capreolus capreolus	European roe deer	JN632610.1
Capreolus pygargus	Siberian roe deer	NC_025271.1
Cervus albirostris	Thorold's deer	JN632690.1
Cervus canadensis songaricus	Tian Shan wapiti	HQ191429.1
Cervus elaphus	Red deer	NC_007704.2
Cervus hanglu yarkandensis	Yarkland deer	GU457435.1
Cervus nippon yesoensis	Yezo sika deer	AB210267.2
Dama dama	Fallow deer	JN632629.1
Dama mesopotamica	Persian fallow deer	NC_024819.1
Elaphodus cephalophus	Tufted deer	DQ873526.1
Elaphurus davidianus	Pere David's deer	JN632632.1
Hippocamelus antisensis	Taruca	JN632646.1
Hydropotes inermis	Water deer	NC_011821.1
Mazama americana	Red brocket	JN632656.1
Mazama gouazoupira	Gray brocket	JN632658.1
Mazama nemorivaga	Amazonian brown brocket	NC_024812.1
Mazama rufina	Dwarf red brocket	JN632661.1
Moschus berezovskii	Forest musk deer	NC_012694.1
Muntiacus crinifrons	Black munjac	AY239042.1
Muntiacus feae	Fea's muntjac	NC_041100.1
Muntiacus muntjak	Southern red muntjac	AY225986.1
Muntiacus putaoensis	Leaf muntjac	NC_036430.1
Muntiacus reevesi	Reeves' muntjac	AF527537.1
Muntiacus vaginalis	Northern red muntjac	MK050505.1
Muntiacus vuquangensis	Large-antlered muntjac	NC_016920.1
Odocoileus hemionus	Mule deer	JN632670.1
Odocoileus virginianus	White-tailed deer	HQ332445.1
Ovis aries	Domestic sheep	NC_001941.1
Ozotoceros bezoarticus	Pampas deer	JN632681.2
Panolia eldii	Eld's deer	JN632697.1
Pudu mephistophiles	Northern pudu	JN632691.1
Pudu puda	Southern pudu	JN632692.1
Rangifer tarandus	Rein deer	AB245426.1
Rucervus duvaucelii	Brasingha	JN632696.1
Rusa alfredi	Philippine spotted deer	JN632698.1
Rusa timorensis	Javan deer	JN632699.1
Rusa unicolor	Sambar	NC_031835.1

Table S3: Substitution models and partitions applied for the Cervidae mitogenomic set.

Software	Substitution model	Partitions
	TIM2+F+I+ Γ 4	atp6.1, atp8.1, cyt.1, nd2.1, nd4.1, nd5.1, rRNA 12s, tRNA-Asp, tRNA-His, tRNA-Thr, tRNA-Val
	11M3+F+1+14	atp6.2, cyt.2, nd1.2, nd2.2, nd3.2, nd4.2, nd4.2, nd5.2
	I N+F+I+I 4 TDM2n+E+D2	appo.3, apps.3, cox1.3, cox2.3
	TPM2u+r+K3	aps.2, tKINA-City, control region
IO TREE	1100+1+14	cox1.1
IQ-IKEE	$\Pi K I + \Gamma + KZ$ $TIM2a + I + \Gamma A$	cox1.2, cox2.2, cox2.2, lu02.2, lu02.4, ltNA-Met
	TIVIJC+1+1 4 TN $F P A$	$\cos 2.1$, $\cos 2.1$, $\sin 1.1$, $\sin 2.1$, $\sin 4.1$, $\sin 4.1$, $\sin 4.1$, $\sin 4.2$, \sin
	$TDM2n + E + I + \Gamma/I$	cost.c, cyt.c, nut.c, n
	$HKV_{\pm}F_{\pm}I_{\pm}\Gamma/I$	nd6 3
	TIM2+F+I+ Γ 4	rRNA 16s, tRNA-Arg, tRNA-Cys, tRNA-Ile, tRNA-Leu2, tRNA-Lys, tRNA-Phe, tRNA-Ser2, tRNA-Trp, tRNA-Tyr
	mixed+I+Γ5	nd4.1, nd2.1, atp6.1, nd3.1, tRNA-Thr, cyt.1
	mixed+I+Γ5	atp6.2, nd4.2, nd3.2
	mixed+I+Γ5	atp6.3
	mixed+ $\Gamma 5$	atp8.1
	mixed+I+Γ5	atp8.2
	mixed+I+Γ5	atp8.3
	mixed+I+∏5	cox1.1
	mixed+I	cox2.2, cox1.2
	mixed+I+∏5	cox2.3, cox1.3
	mixed+I+Γ5	cox2.1
	mixed+I+Γ5	nd4L.1, cox3.1, tRNA-Asn
	mixed+I+Γ5	cox3.2, tRNA-Met, tRNA-Leu1
	mixed+I+Γ5	nd3.3, nd1.3, cox3.3, nd4L.3, nd4.3
	mixed+I+ $\Gamma\Gamma5$	cyt.2, nd4L.2, nd1.2
MrBayes	mixed+I+Γ5	cyt.3
	mixed+Γ5	ndl.1
	mixed+I+Γ5	nd2.2, nd5.2
	mixed+ $\Gamma\Gamma5$	nd2.3
	mixed+I+Γ5	rRNA 12s, nd5.1
	mixed+I+Γ5	nd5.3
	mixed+1+1'5	nd6.1
	mixed+I+Γ5	nd6.2
	mixed+I+Γ5	nd6.3
	mixed+1+1'5	tRNA-Gly, rRNA 16s, tRNA-Irp
	mixed+I+1'5	tRNA-Gln, tRNA-Ser1, tRNA-Pro, tRNA-Ala, tRNA-Glu
	mixed+I+ Γ 5	tRNA-Phe, tRNA-Arg
	mixed+I+F5	tRNA-Asp, tRNA-Ser2, tRNA-Val, tRNA-His
	mixed+1'5	tRNA-Cys, tRNA-Lys
	mixed+1+1'5	tKNA-Ile, tKNA-Iyr, tKNA-Leu2
	mixed+I+Γ5	control region

Table S4: Substitution models and partitions applied for the Alces mitogenomic set.

Software	Substitution model	Partitions
	HKY+F+I	atp6.1, nd2.1, nd4.1, nd5.1, rRNA 12s, rRNA 16s, tRNA-Gly, tRNA-Phe, tRNA-Ser2, tRNA-Val
	HKY+F	atp6.3, atp8.3, cox1.3, cox2.3, cox3.3, cyt.3, nd1.3, nd2.3, nd3.3, nd4.3, nd4L.3, nd5.3
IQ-TREE	K2P	cox1.1, cox3.1, cyt.1, nd1.1, nd3.1, nd4L.1, tRNA-Cys, tRNA-Met
	F81+F	nd5.2
	HKY+F	nd6.3, tRNA-Ala, tRNA-Gln, tRNA-Glu, tRNA-Pro
	HKY+F+I	control region
	mixed	atp6.1
	mixed	nd4.3, cox1.3, atp6.3
	mixed	nd1.3, cox2.3, atp8.3
	mixed	nd4L.1, tRNA-Cys, cox1.1
	mixed	cox3.1, tRNA-Met, cyt.1, nd1.1
	mixed	cox3.3, nd5.3, nd3.3
MrBayes	mixed	cyt.3, nd2.3, nd4L.3
	mixed+I	tRNA-Phe, nd2.1, rRNA 12s, tRNA-Ser2
	mixed	nd3.1
	mixed+I	tRNA-Gly, tRNA-Val, nd4.1, rRNA 16s, nd5.1
	mixed	nd5.2
	mixed	nd6.3
	mixed	tRNA-Glu, tRNA-Ala, tRNA-Pro, tRNA-Gln
	mixed+I+Γ5	control region

Table S5: Substitution models and partitions applied for two mitogenomic set in molecular dating in BEAST.

Data set	Substitution model	Partitions
	GTR+I+Γ5	nd4.1, nd2.1, atp6.1, nd3.1, tRNA-Thr, cyt.1
	GTR+I+Γ5	atp6.2, nd4.2, nd3.2
	GTR+I+Γ5	atp6.3
	TrN+Γ5	atp8.1
	HKY+I+Γ5	atp8.2
	HKY+I+Γ5	atp8.3
	TrNef+I+Γ5	cox1.1
	HKY+I	cox2.2, cox1.2
	TIM+I+Γ5	cox2.3, cox1.3
	TrNef+I+Γ5	cox2.1
	SYM+I+Γ5	nd4L.1, cox3.1, tRNA-Asn
	ΗΚΥ+Ι+Γ5	cox3.2, tRNA-Met, tRNA-Leu1
	TIM+I+Γ5	nd3.3, nd1.3, cox3.3, nd4L.3, nd4.3
	TIM+I+Γ5	cyt.2, nd4L.2, nd1.2
Cervidae	TrN+I+Γ5	cyt.3
	GTR+Γ5	nd1.1
	GTR+I+Γ5	nd2.2, nd5.2
	TrN+Γ5	nd2.3
	GTR+I+Γ5	rRNA 12s, nd5.1
	TrN+I+Γ5	nd5.3
	GTR+I+Γ5	nd6.1
	НКҮ+I+Г5	nd6.2
	НКҮ+I+Г5	nd6.3
	GTR+I+Γ5	tRNA-Gly, rRNA 16s, tRNA-Trp
	GTR+I+Γ5	tRNA-Gln, tRNA-Ser1, tRNA-Pro, tRNA-Ala, tRNA-Glu
	HKY+I+ $\Gamma 5$	tRNA-Phe, tRNA-Arg
	TrN+I+Γ5	tRNA-Asp, tRNA-Ser2, tRNA-Val, tRNA-His
	$TVM+\Gamma 5$	tRNA-Cys, tRNA-Lys
	GTR+I+Γ5	tRNA-Ile, tRNA-Tyr, tRNA-Leu2
	GTR+I+Γ5	control region
	TrN	atp6.1
	HKY	nd4.3, cox1.3, atp6.3
	K81uf	nd1.3, cox2.3, atp8.3
	TrN	nd4L.1, tRNA-Cys, cox1.1
	K80	cox3.1, tRNA-Met, cyt.1, nd1.1
	TrN	cox3.3, nd5.3, nd3.3
Alces	HKY	cyt.3, nd2.3, nd4L.3
	TIM+I	tRNA-Phe, nd2.1, rRNA 12s, tRNA-Ser2
	TrNef	nd3.1
	TrN+I	tRNA-Gly, tRNA-Val, nd4.1, rRNA 16s, nd5.1
	F81	nd5.2
	TrN	nd6.3
	TrN	tRNA-Glu, tRNA-Ala, tRNA-Pro, tRNA-Gln
	НКҮ+I+Г5	control region

Supplementary Information Phylogeny and diversity of moose (Alecs glass, Corvidee, Memmelie) revealed h

Phylogeny and diversity of moose (*Alces alces*, Cervidae, Mammalia) revealed by complete mitochondrial genomes M. Świsłocka, M. Matosiuk, M. Ratkiewicz, A. Borkowska, M. Czajkowska, P. Mackiewicz

Table S6: Molecular dating of the main splitting events within Cervidae for two approaches assuming the normal or lognormal distribution prior for the age of the crown Cervidae. The values are given in Mya.

Split		Normal d	listribution	Lognormal distributionB		
Spin	Man	Man	95 %HP	Man	Man	95 %HP
Cervidae–(Moschidae+Bovidae)	22.04	21.88	17.79 to 26.69	25.67	25.57	21.73 to 29.82
Moschidae–Bovidae	19.21	19.09	14.59 to 24.08	21.99	21.97	16.85 to 27.15
Cervinae–Capreolinae	13.38	13.25	11.09 to 15.92	16.28	16.16	14.91 to 17.9
Cervinae	10.72	10.61	8.98 to 12.67	12.67	12.63	10.87 to 14.56
Muntiacini	9.33	9.23	7.66 to 11.22	11.00	10.97	9.15 to 12.89
Muntiacus	3.83	3.79	3.00 to 4.76	4.57	4.54	3.69 to 5.48
Cervini	6.51	6.44	5.20 to 7.94	7.73	7.68	6.44 to 9.10
Cervus	2.25	2.22	1.76 to 2.77	2.65	2.64	2.16 to 3.18
Capreolinae	12.11	12.00	9.97 to 14.45	14.67	14.59	13.11 to 16.38
Odocoileini	9.01	8.93	7.33 to 10.84	10.75	10.71	9.24 to 12.35
Alceini–Capreolini	11.52	11.42	9.43 to 13.80	13.95	13.89	12.33 to 15.67
Capreolini	7.48	7.42	5.69 to 9.43	8.99	8.97	6.99 to 11.05
Alceini	0.45	0.44	0.31 to 0.61	0.54	0.53	0.37 to 0.73

Supplementary Information

Phylogeny and diversity of moose (*Alces alces*, Cervidae, Mammalia) revealed by complete mitochondrial genomes M. Świsłocka, M. Matosiuk, M. Ratkiewicz, A. Borkowska, M. Czajkowska, P. Mackiewicz

Figure S7: The consensus of trees obtained in three approaches for the Cervidae set. Numbers at the nodes, in the order shown, correspond to: the number of the trees that contained a given node (NT), posterior probabilities estimated in MrBayes (MB) and PhyloBayes (PB) as well as support values obtained by the approximate likelihood ratio test based on a Shimodaira–Hasegawa-like procedure (SH) and bootstrap method (BP) calculated in IQ-TREE. Subtrees with different topology than the consensus are also shown.

Figure S8: Individual trees obtained in three approaches for the Cervidae set. Numbers at nodes correspond to posterior probabilities (for MrBayes and PhyloBayes) or support values obtained by the approximate likelihood ratio test based on a Shimodaira–Hasegawa-like procedure and bootstrap method (for IQ-TREE).

Supplementary Information

Phylogeny and diversity of moose (*Alces alces*, Cervidae, Mammalia) revealed by complete mitochondrial genomes M. Świsłocka, M. Matosiuk, M. Ratkiewicz, A. Borkowska, M. Czajkowska, P. Mackiewicz

Figure S9: The chronogram for the Cervidae set assuming the lognormal distribution prior for the age of the crown Cervidae. Posterior probabilities are shown at nodes. Bars correspond to 95 % HPD range. The average, median and 95 % HPD of main splitting events were included in Table S6.

Figure S10: The chronogram for the *Alces* set. Posterior probabilities are shown at nodes. Bars correspond to 95 % HPD range. MIS means Marine isotope stages. The δ^{18} O curve was compiled from several sources depending on four time slices: 0–9750 yrs. BP from NGRIP1 (Rasmussen et al., 2014; Seierstad et al., 2014), 9770–10,630 yrs. BP and 56,070–122,230 yrs. BP from NGRP2 (Rasmussen et al., 2014; Seierstad et al., 2014), 10,650–56,050 yrs. BP from Combined Cariaco and Greenland Ice Core Chronology 2005 (GICC05) (Cooper et al., 2015) and 123,000–5,320,000 yrs. BP from the benthic curve by Lisiecki and Raymo (2005). This tree was obtained assuming for the age of the root 95 % confidence interval 374–725 kya as obtained in the dating for the Cervidae set assuming the lognormal distribution prior for the age of the crown Cervidae.

